Sea surface infrared reflectivity is an important parameter in maritime remote sensing. Usually, single reflection by the sea surface is considered. However, a loss of energy is then reported for large zenith observation angles (θ>50°) with a peak of about 4% for θ≈80°, because of the neglect of the multiple surface reflections. This paper presents calculations for the polarized infrared reflectivity of one-dimensional sea surfaces (2D problems) with two surface reflections, by introducing a bistatic illumination function with two reflections. The results show good agreement with the ones obtained by a Monte Carlo ray-tracing method. It is also shown that the energy conservation criterion is better satisfied after considering two surface reflections.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.52.006100DOI Listing

Publication Analysis

Top Keywords

surface reflections
16
infrared reflectivity
12
polarized infrared
8
reflectivity one-dimensional
8
sea surfaces
8
sea surface
8
surface
6
reflections
5
one-dimensional gaussian
4
sea
4

Similar Publications

Discovery of potential VEGFR-2 inhibitors from natural products by virtual screening and molecular dynamics simulation.

Phys Chem Chem Phys

January 2025

Chongqing Key Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, P. R. China.

Hepatocellular carcinoma (HCC) is the most common cancer worldwide and vascular endothelial growth factor receptor-2 (VEGFR-2) is an important target in the development of inhibitors for the treatment of liver cancer. So far, however, there are no effective drugs targeting VEGFR-2 to achieve complete treatment of liver cancer. In this study, we employed molecular docking, molecular dynamics simulations, molecular mechanics generalized Born surface area (MM-GBSA) method, quantum mechanics/molecular mechanics (QM/MM) calculations and steered molecular dynamics simulations to discover the potential inhibitors from COCONUT database targeting VEGFR-2.

View Article and Find Full Text PDF

This study aimed to evaluate the impact of different manipulation methods and storage environments on the microstructural, chemical, and mechanical properties of calcium-enriched mixture (CEM) cement. Four sample groups were examined, including nondried (ND-I) and dried (D-I) groups placed directly in an incubator, dried samples stored in phosphate-buffered saline (PBS) (D-P), and dried samples stored in distilled water (D-W). Various analyses, including Vickers microhardness, compressive strength, Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDS) were conducted after incubating the samples for 7 days.

View Article and Find Full Text PDF

The perceived colors of silicon-on-insulator (SOI) wafers with etched Si surface layers of thickness 90 nm to 30 nm vary from turquoise to purple to golden. Measured reflectance curves spanning ultraviolet, visible, and near infrared wavelengths have an amplitude modulated oscillatory pattern. Multilayer reflectance calculations indicate the oscillatory pattern results from the 2 µm thick buried SiO layer which functions as a nearly lossless reflective Fabry-Perot etalon in the near infrared where SiO and Si are transparent.

View Article and Find Full Text PDF

Ultrashort pulse sources are complex and resource-intensive. To reduce overhead and simplify operations, we had previously developed a method to deliver ultra-short pulses through fiber-optic links to multiple locations and to characterize them remotely using a compact detector module. We created a pulse pair with varying delays at the central location using a pulse shaper before launching them into the fiber links and measured the first and second-order autocorrelations at the satellite location.

View Article and Find Full Text PDF

The significant absorption and scattering of light during its propagation in water severely degrade the quality of underwater imaging, presenting challenges for developing high-precision 3D imaging techniques based on optical methods. Polarization imaging has demonstrated effectiveness in mitigating the effects of scattering, making it a valuable approach for underwater imaging. Additionally, the polarization state of reflected light can be utilized for surface normal estimation and 3D shape reconstruction.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!