The validation of the multiresolution model of sea radiance in the infrared, developed at Onera, is investigated by comparison with measurements obtained during the MIRAMER campaign that took place in May 2008 in the Mediterranean Sea. The sea radiance model and optical properties are expressed and the experimental setup of the campaign is briefly presented. We focus on solar glint measurements collected on the 22nd of May at 5 h 59 m 50 s in the mid-wave IR (3.93-4.14 μm) band and the long-wave IR (8.19-8.96 μm) band onboard the research vessel (R/V) Atalante at a grazing observational angle. A sensitivity analysis of glitter radiance on atmospheric and aerosol profiles, as well as sea temperature and wind speed in the vicinity of the measured contextual parameters, is presented. Modeled and measured images are compared and results are delved into further by comparisons of histograms, averaged vertical and horizontal profiles. Errors in the 3.93-4.14 μm band are under those potentially due to calibration, whereas discrepancies are noticed in the 8.19-8.96 μm band, where the deepest analysis has to be performed.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.52.006063DOI Listing

Publication Analysis

Top Keywords

μm band
16
sensitivity analysis
8
miramer campaign
8
solar glint
8
sea radiance
8
393-414 μm
8
819-896 μm
8
sea
5
matisse-v20 infrared
4
infrared sea
4

Similar Publications

Digital devices have gained popularity in the last 10 years as a tool for exercise prescription, the monitoring of daily physical activity, and nutrition for the management of a health-related parameter. Therefore, the aim of this study was to assess the effectiveness of the use of digital devices to monitor exercise data in sedentary persons with HIV who exercise following an individualized activity pacing (AP) protocol on cardiorespiratory fitness body composition, blood lipid profile, and psychological parameters. Twenty-four PLWH were enrolled in an 18-week randomized, open-label, pilot AP exercise protocol.

View Article and Find Full Text PDF

Engineering near-infrared laser-activated gold nanorod vesicles with upper critical solution temperature for photothermal therapy and chemotherapy.

J Colloid Interface Sci

June 2023

State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China. Electronic address:

Article Synopsis
  • - Researchers have developed a new type of gold nanorod drug delivery system (UGRV-DOX) that enhances cancer treatment through multimodal synergistic therapy and utilizes the unique properties of gold nanorods for photothermal therapy.
  • - The UGRV-DOX vesicles are designed with a hollow structure to increase drug loading capacity and are made with specialized polymers that minimize drug leakage, allowing for effective and controlled drug release when exposed to light.
  • - In animal studies, these nanovesicles demonstrated a powerful anti-tumor effect, significantly reducing tumor size by 99.3% when treated with an 808 nm laser, showcasing their potential for precise cancer treatment.
View Article and Find Full Text PDF

Solvent-Responsive Invisible Photonic Patterns with High Contrast for Fluorescence Emission Regulation and Anti-Counterfeiting.

ACS Appl Mater Interfaces

October 2022

State Key Laboratory of Materials Processing and Die & Mould Technology and Key Laboratory of Material Chemistry for Energy Conversion & Storage of Ministry of Education (HUST), School of Chemistry & Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan430074, China.

Invisible photonic patterns (IPPs) are photonic materials that can display hidden patterns under external stimulation and are attractive in anti-counterfeiting devices and information storage. In this work, we report a solvent-responsive invisible photonic pattern (SRIPP) with high contrast by polymerizing two monomers of acrylamide (AAm) and poly(ethylene glycol) methacrylate (PEGMA) with different solubility parameters in different regions of poly(hydroxyethyl methacrylate) photonic gels. The two regions with different solvent responsiveness can shrink and swell in the same environment, thus causing the colors of different regions of photonic gel to shift in opposite directions from the initial state.

View Article and Find Full Text PDF

This article presents an imaging probe with a 256-element ultrawideband (UWB) 1-D capacitive micromachined ultrasonic transducer (CMUT) array designed for acoustic angiography (AA). This array was fabricated on a borosilicate glass wafer with a reduced bottom electrode and an additional central plate mass to achieve the broad bandwidth. A custom 256-channel handheld probe was designed and implemented with integrated low-noise amplifiers and supporting power circuitry.

View Article and Find Full Text PDF

Adsorptional-photocatalytic removal of fast sulphon black dye by using chitin-cl-poly(itaconic acid-co-acrylamide)/zirconium tungstate nanocomposite hydrogel.

J Hazard Mater

August 2021

College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, Nanshan District Key Laboratory for Biopolymers and Safety Evaluation, Shenzhen University, Shenzhen 518060, PR China. Electronic address:

In the present work, the removal of fast sulphon black (FSB) dye from water was executed by using chitin-cl-poly(itaconic acid-co-acrylamide)/zirconium tungstate nanocomposite hydrogel (Ch-cl-poly(IA-co-AAm)-ZrW NCH). The Ch-cl-poly(IA-co-AAm)-ZrW NCH was fabricated proficiently by microwave-induced sol-gel/copolymrization method. The zirconium tungstate (ZrW) photocatalyst was prepared by co-precipitation method using sodium tungstate and zirconium oxychloride in ratio (2:1).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!