Injection molding is an important mass-production tool in the optical industry. In this research our aim is to develop a process of combining ultraprecision diamond turning and injection molding to create a unique low-cost manufacturing process for progressive addition lenses (PALs). In industry, it is a well-known fact that refractive index variation and geometric deformation of injection molded lenses due to the rheological properties of polymers will distort their optical performance. To address this problem, we developed a method for determining the optical aberrations of the injection molded PALs. This method involves reconstructing the wavefront pattern in the presence of uneven refractive index distribution and surface warpage using a finite element method. In addition to numerical modeling, a measurement system based on a Shack-Hartmann wavefront sensor was used to verify the modeling results. The measured spherocylindrical powers and aberrations of the PALs were in good agreement with the model. Consequently, the optical aberrations of injection molded PALs were successfully predicted by finite element modeling. In summary, it was demonstrated in this study that numerically based optimization for PAL manufacturing is feasible.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/AO.52.006022 | DOI Listing |
Front Cell Infect Microbiol
January 2025
Department of Comparative Biochemistry and Bioanalytics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Kraków, Poland.
is a prevalent fungal pathogen responsible for infections in humans. As described recently, nanometer-sized extracellular vesicles (EVs) produced by play a crucial role in the pathogenesis of infection by facilitating host inflammatory responses and intercellular communication. This study investigates the functional properties of EVs released by biofilms formed by two strains-3147 (ATCC 10231) and SC5314-in eliciting host responses.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Academic Unit of Materials Engineering, Federal University of Campina Grande, Av. Aprígio Veloso, 882-Bodocongó, Campina Grande 58429-900, PB, Brazil.
In this research, poly(lactic acid) (PLA) nanocomposites with multi-walled carbon nanotubes (MWCNT) were produced by extrusion, injection, and compression molding, focusing on electromagnetic shielding. Various amounts of carbon nanotubes (MWCNTs) were tested in PLA matrix, specifically ranging from 1 to 4 parts per hundred resin (phr). The resulting nanocomposites were analyzed before and after undergoing annealing heat treatment.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, Sogang University, Seoul 04107, Republic of Korea.
Metallic injection molding combines aluminum flake metallic pigments with polymers to directly produce components with metallic luster, improving production efficiency and reducing environmental impact. However, flake line defects that occur in regions where ribs or flow paths intersect remain a significant challenge. This study proposes a velocity model that considers the flow characteristics between the surface and core layers and an alignment model that incorporates the orientation of aluminum flakes to predict appearance defects.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, National Cheng Kung University, Tainan 701401, Taiwan.
This study developed a scientific process parameter setup based on nozzle pressure and screw position, with the process parameter search sequence being injection speed, / switchover position, packing pressure, and packing time. Unlike previous studies, this study focuses on the scientific process parameter setup of experiments and simulations, as well as on the implementation of calibration. Experiments and simulations had the same trend of results in the scientific process parameter setup.
View Article and Find Full Text PDFPolymers (Basel)
January 2025
Department of Mechanical Engineering, Chien-hsin University of Science and Technology, Taoyuan 320678, Taiwan.
Graphene's incorporation into polymers has enabled the development of advanced polymer/graphene nanocomposites with superior properties. This study focuses on the use of a microcellular foamed polystyrene (PS)/graphene (GP) nanocomposite (3 wt%) for nickel (II) ion removal from aqueous solutions. Adsorption behavior was evaluated through FTIR, TEM, SEM, TGA, and XRD analyses.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!