It is demonstrated by numerical modeling that spectrally dispersed compound pumping diodes and low-loss pumping chamber reduced the temperature dependence of the output energy of quasi-continuous wave diode-pumped Nd:YAG lasers considerably. Several compound diodes with different spectral profiles were tested for pumping. The laser energy was calculated as a function of diode temperature from -30°C to 60°C. When a compound diode with a flat-top spectrum was used for pumping, the mean laser energy was 83% of the maximum energy of a Nd:YAG laser pumped by a diode with a narrow bandwidth. In addition, a compound diode with three emission lines was tested for pumping. When the wavelength gap between the adjacent emission lines of the pumping diode was in the range of 3-10 nm, the mean energy of the Nd:YAG laser became similar to that of a Nd:YAG laser pumped by a diode with a flat-top spectrum.

Download full-text PDF

Source
http://dx.doi.org/10.1364/AO.52.005967DOI Listing

Publication Analysis

Top Keywords

ndyag laser
16
temperature dependence
8
dependence output
8
output energy
8
energy quasi-continuous
8
quasi-continuous wave
8
wave diode-pumped
8
diode-pumped ndyag
8
tested pumping
8
pumping laser
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!