Background: Brain metastases are generally considered to be well demarcated from the surrounding brain parenchyma, although infiltrative growth patterns have been observed. We systemically investigated infiltration patterns and expression of adhesion molecules in a large and well-defined series of autopsy cases of brain metastases.
Methods: Ninety-seven autopsy specimens from 57 brain metastasis patients (primary tumor: 27 lung cancer, 6 breast cancer, 8 melanoma, 2 colorectal cancer, 1 kidney cancer, and 13 other) were evaluated for patterns of invasion into surrounding brain parenchyma. Expression of integrins αv; cytoplasmic β3, αvβ3, αvβ5, αvβ6, and αvβ8; and of E and N cadherin were evaluated using immunohistochemistry.
Results: Three main invasion patterns were seen: well-demarcated growth (29/57, 51%), vascular co-option (10/57, 18%), and diffuse infiltration (18/57, 32%). There was no statistically significant association of invasion pattern with primary tumor type, although vascular co-option was most common in melanoma brain metastases (4/10). Invasion patterns of different brain metastases of the same patient were highly concordant (P < .001, chi-square test). Distance of infiltration from the main tumor mass ranged from 12.5 µm to 450 µm (median 56.2 µm) and was not significantly different between the vascular co-option and the diffuse infiltration groups. Levels of αvβ6 were significantly higher in the well-demarcated group than in the vascular co-option and the diffuse infiltration groups (P = .033, Kruskal-Wallis test). Expression of αvβ5 in tumor cells was higher in brain metastasis lesions previously treated with stereotactic radiosurgery (P = .034, chi-square test).
Conclusions: Distinct invasion patterns of brain metastases into the brain parenchyma are not specific for primary tumor types, seem to be influenced by expression of αv integrin complexes, and may help to guide clinical decision-making.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3829586 | PMC |
http://dx.doi.org/10.1093/neuonc/not112 | DOI Listing |
Pituitary
January 2025
Department of Neurological Surgery, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, 2nd Floor, Miami, Fl, 33136, USA.
Purpose: Prolonged length of stay (PLOS) can lead to resource misallocation and higher complication risks. However, there is no consensus on defining PLOS for endoscopic transsphenoidal pituitary surgery (ETPS). Therefore, we investigated the impact of varying PLOS definitions on factors associated with PLOS in patients undergoing ETPS.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFPituitary
January 2025
Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA.
Purpose: Pituitary adenomas, despite their histologically benign nature, can severely impact patients' quality of life due to hormone hypersecretion. Invasion of the medial wall of the cavernous sinus (MWCS) by these tumors complicates surgical outcomes, lowering biochemical remission rates and increasing recurrence. This study aims to share our institutional experience with the selective resection of the MWCS in endoscopic pituitary surgery.
View Article and Find Full Text PDFZhonghua Bing Li Xue Za Zhi
February 2025
Department of Pathology, the First People's Hospital of Changzhou, Jiangsu Province, Changzhou 213000, China.
Methods Cell Biol
January 2025
Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States. Electronic address:
Glioblastomas (GBMs) are the most common and aggressive brain tumors, with a poor prognosis. Effective preclinical models are crucial to investigate GBM biology and develop novel treatments. Syngeneic models, which consist in injecting murine GBM cells into mice with a similar genetic background, offer reproducibility, cost-effectiveness, and an intact immune system, making them ideal for immunotherapy research.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!