Transcriptomic and epigenetic changes in early liver steatosis associated to obesity: effect of dietary methyl donor supplementation.

Mol Genet Metab

Department of Nutrition, Food Sciences and Physiology, University of Navarra, Irunlarrea 1, 31008 Pamplona, Navarra, Spain. Electronic address:

Published: November 2013

Non-alcoholic fatty liver disease is a primary hepatic manifestation of obesity and an important adverse metabolic syndrome trait. Animal models of diet-induced obesity promote liver fat accumulation putatively associated with alterations in epigenetic profile. Dietary methyl donor-supplementation may protect against this disturbance during early developmental stages affecting the molecular basis of gene regulation. The aim of this study was to investigate the transcriptomic and epigenetic mechanisms implicated in liver fat accumulation as a result of an obesogenic diet and the putative preventive role of dietary methyl donors. Forty-eight male Wistar rats were assigned into four dietary groups for 8 weeks; control, control methyl-donor-supplemented with a dietary cocktail containing betaine, choline, vitamin B12 and folic acid, high-fat-sucrose and high-fat-sucrose methyl-donor-supplemented. Liver fat accumulation induced by a HFS diet was prevented by methyl donor supplementation in HFS-fed animals. A liver mRNA microarray, subsequently validated by real time-qPCR, showed modifications in some biologically relevant genes involved in obesity development and lipid metabolism (Lepr, Srebf2, Agpat3 and Esr1). Liver global DNA methylation was decreased by methyl donor supplementation in control-fed animals. Methylation levels of specific CpG sites from Srebf2, Agpat3 and Esr1 promoter regions showed changes due to the obesogenic diet and the supplementation with methyl donors. Interestingly, Srebf2 CpG23_24 methylation levels (-167 bp and -156 bp with respect to the transcriptional start site) correlated with HDLc plasma levels, whereas Esr1 CpG14 (-2623 bp) methylation levels were associated with body and liver weights and fat content. Furthermore HFS diet-induced liver fat accumulation was prevented by methyl donor supplementation. In conclusion, both obesogenic diet and methyl donor supplementation modified the mRNA hepatic profile as well as the methylation of specific gene promoters and total DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymgme.2013.08.022DOI Listing

Publication Analysis

Top Keywords

methyl donor
20
donor supplementation
20
liver fat
16
fat accumulation
16
dietary methyl
12
obesogenic diet
12
methylation levels
12
liver
9
transcriptomic epigenetic
8
methyl
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!