Molecular characterization of a glycosyl hydrolase family 10 xylanase from Aspergillus niger.

Protein Expr Purif

Institute of Biotechnology, Viet Nam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay Distr., 10600 Hanoi, Viet Nam.

Published: December 2013

AI Article Synopsis

  • A gene coding for an endo-β-1,4-xylanase (XlnA) from Aspergillus niger was successfully cloned, sequenced, and expressed in Pichia pastoris, showing high similarity to other A. niger strains.
  • The purified enzyme demonstrated a molecular mass of 35.5 kDa, specific activity of 808.5 U/mg, and optimal activity at 50°C and pH 7.0, with good stability under various conditions.
  • The enzyme was effective in breaking down birch wood xylan into oligosaccharides without cellulase or mannanase activity, indicating its potential use as a feed enzyme.

Article Abstract

A gene coding for an endo-β-1,4-xylanase (XlnA) (glycosyl hydrolase family 10) from Aspergillus niger DSM 1957 was cloned and sequenced. The cDNA sequence (984 bp) and its putative endoxylanase (327 aa protein with a predicted molecular mass of 35.5 kDa and pI 6.23) showed 91.3-99.5% and 96.3-99.1% identities with cDNA sequences and their corresponding endoxylanases from A. niger strains from GenBank, respectively. The cDNA was expressed in Pichia pastoris GS115 under the control of AOX1 promoter at a level of 46.4 U/ml culture supernatant, after 144 h of growth at 30°C in YP medium induced with 0.5% (v/v) of methanol. The molecular mass of the purified XlnA determined by SDS-PAGE was 35.5k Da with a specific activity of 808.5 U/mg towards 1% (w/v) of birch wood xylan. Temperature and pH optimum were observed at 50°C and pH 7.0, respectively. The enzyme was stable over a temperature range of 25-40°C and at pH range of 4.5-8.5 and resistant to Tween 80 and acetone. The K(m) and V(max) value obtained for the purified xylanase were 25.5mg/ml and 5000 μmol/min/mg protein with birch wood xylan as substrate, respectively. The xylanase was free of cellulase and mannanase activity but highly active towards birch wood xylan. The major products of the birch wood xylan hydrolysis were predicted as xylotriose, xylotetraose, and xylopentose. The biochemical characteristics suggested that the recombinant xylanase has a potential application, including use as a feed enzyme.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pep.2013.09.011DOI Listing

Publication Analysis

Top Keywords

birch wood
16
wood xylan
16
glycosyl hydrolase
8
hydrolase family
8
aspergillus niger
8
molecular mass
8
molecular characterization
4
characterization glycosyl
4
xylanase
4
family xylanase
4

Similar Publications

Sr and Cs distribution in Chornobyl forests: 30 years after the nuclear accident.

J Environ Radioact

January 2025

Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA.

The primary aim of this study was to quantify patterns in the distribution of Sr and Cs activity in pine (Pinus sylvestris L.: 18 sites) and birch (Betula pendula Roth.: 2 sites) forests within the Chornobyl exclusion zone, 30 years after the Chornobyl nuclear power plant (NPP) accident (1986).

View Article and Find Full Text PDF

In this study, different combinations of mycelium biocomposites (MBs) were developed using primary substrates sourced from the local agricultural, wood processing, and paper industries. The physicomechanical properties, thermal conductivity, and fire behavior were evaluated. The highest bending strength was achieved in composites containing waste fibers and birch sanding dust, with a strength competitive with that of synthetic polymers like EPS and XPS, as well as some commercial building materials.

View Article and Find Full Text PDF

Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.

View Article and Find Full Text PDF

The widespread development of lignin valorization is hindered by a number of challenges. In particular, efficient valorization necessitates comprehensive characterization of initial lignins. In this work, the structural features of lignins from birch wood (Bétula péndula), obtained by various methods of hard and mild fractionation of biomass: hydrolysis (Hyd-L), kraft (Kraft-L), soda (Soda-L), and soda-ethanol (SodaEt-L) processes, as well as organosolv processes with dioxane (MWL, DL) and dimethyl sulfoxide (DMSO-L) have been comprehensively studied.

View Article and Find Full Text PDF

This study investigates the effects of suberic acid residue (SAR) additions on structural single-layer particleboard (like the P5 type, according to EN 312) properties, specifically the water absorption (WA), thickness swelling (TS), modulus of rupture (MOR), modulus of elasticity (MOE), screw withdrawal resistance (SWR), and internal bond (IB) strength. The results indicate that finer SAR fractions (1/0.25 and 2/1) reduce the WA after 2 h of soaking, while larger fractions increase the WA after 24 h, with only the smallest fraction meeting the TS standards.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!