Photosensitizing properties of water-extractable organic matter from soils.

Chemosphere

Clermont Université, Université Blaise Pascal, Institut de Chimie de Clermont-Ferrand, BP 10448, 63000 Clermont-Ferrand, France.

Published: January 2014

Water-extractable organic matter (WEOM) was extracted using pure water from two black soils and from the Elliott reference soil of the International Humic Substances Society (IHSS). WEOMs were characterized by chemical and spectroscopic methods. The apparent quantum yields of singlet oxygen, triplet excited states and hydroxyl radicals formation upon irradiation within the wavelength range 290-450 nm were determined using chemical probes and compared to those of standard Elliott humic substances. In general, the aromatic content, as measured by the SUVA value, was close in WEOMs and humic substances, while the E2/E3 was higher and the humification index lower in the former. Quantum yield values measured for WEOMs fell within the range of those found for basic medium extracted humic substances or were even higher in one case. Thus, water soluble aromatic moiety of the soil organic matter, especially those with low humification degree, is important for the photosensitizing properties. We also found that WEOMs sensitized the bisphenol A phototransformation with rates of the same order of magnitude for all the samples.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2013.09.023DOI Listing

Publication Analysis

Top Keywords

humic substances
16
organic matter
12
photosensitizing properties
8
water-extractable organic
8
properties water-extractable
4
matter soils
4
soils water-extractable
4
matter weom
4
weom extracted
4
extracted pure
4

Similar Publications

This is the first study to investigate the possible release of microplastic-derived dissolved organic matter (MP-DOM) in water from three major types of bio-based MPs, namely, polylactic acid (PLA), polyhydroxyalkanoate (PHA) and PLA-PHA mixtures, under ultraviolet (UV) irradiation conditions. At an initial MP concentration of approximately 5 g per liter, the release of MP-DOM from the studied MPs ranged from 1.55-6.

View Article and Find Full Text PDF

The light-absorbing chemical components of atmospheric organic aerosols are commonly referred to as Brown Carbon (BrC), reflecting the characteristic yellowish to brown appearance of aerosol. BrC is a highly complex mixture of organic compounds with diverse compositions and variable optical properties of its individual chromophores. BrC significantly influences the radiative budget of the climate and contributes to adverse air pollution effects such as reduced visibility and the presence of inhalable pollutants and irritants.

View Article and Find Full Text PDF

Humic substances, such as Fulvic acid (FA) and humic acid (HA), are widely used for the remediation of heavy metal-contaminated soils due to their ability to enhance metal mobility and facilitate plant uptake. In this study, we conducted a pot experiment with alfalfa to investigate the effects of FA and HA amendments on the mobility of molybdenum (Mo) in the soil, its uptake by alfalfa plants, and subsequent changes in the microbial community. The results demonstrated that both FA and HA influence Mo accumulation in the soil and plants.

View Article and Find Full Text PDF

Mechanistic study of micropollutants rejection by nanofiltration of a natural water.

Environ Technol

December 2024

Univ Rennes, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, Rennes, France.

A natural water sampled after a sand filtration step and spiked with four organic micropollutants (metolachlor ESA, metolachlor NOA, desethylatrazine and metaldehyde) was treated by a loose nanofiltration membrane. The Steric, Electric, and Dielectric model (SEDE model) was then used to predict the separation performance of the membrane towards the various ions and micropollutants in the water matrix in order to study the transport mechanism of ions and micropollutants through the membrane. The SEDE model was found to satisfactorily predict the rejection sequences of inorganic anions and cations, as well as neutral (desethylatrazine and metaldehyde) and charged (metolachlor ESA and metolachlor NOA) micropollutants.

View Article and Find Full Text PDF

The present study was conducted to evaluate the effect of humic substances on performance and selected blood biochemical parameters in turkeys. A total of twenty 6-week-old turkey hybrids (Big 6) were divided into two groups. The first group of turkeys was fed the basal diet without any supplementation of humic substances as a control group.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!