Lung bioengineering, a novel approach to obtain organs potentially available for transplantation, is based on decellularizing donor lungs and seeding natural scaffolds with stem cells. Various physicochemical protocols have been used to decellularize lungs, and their performance has been evaluated in terms of efficient decellularization and matrix preservation. No data are available, however, on the effect of different decellularization procedures on the local stiffness of the acellular lung. This information is important since stem cells directly sense the rigidity of the local site they are engrafting to during recellularization, and it has been shown that substrate stiffness modulates cell fate into different phenotypes. The aim of this study was to assess the effects of the decellularization procedure on the inhomogeneous local stiffness of the acellular lung on five different sites: alveolar septa, alveolar junctions, pleura, and vessels' tunica intima and tunica adventitia. Local matrix stiffness was measured by computing Young's modulus with atomic force microscopy after decellularizing the lungs of 36 healthy rats (Sprague-Dawley, male, 250-300 g) with four different protocols with/without perfusion through the lung circulatory system and using two different detergents (sodium dodecyl sulfate [SDS] and 3-[(3-cholamidopropyl) dimethylammonio]-1-propanesulfonate [CHAPS]). The local stiffness of the acellular lung matrix significantly depended on the site within the matrix (p<0.001), ranging from ∼ 15 kPa at the alveolar septum to ∼ 60 kPa at the tunica intima. Acellular lung stiffness (p=0.003) depended significantly, albeit modestly, on the decellularization process. Whereas perfusion did not induce any significant differences in stiffness, the use of CHAPS resulted in a ∼ 35% reduction compared with SDS, the influence of the detergent being more important in the tunica intima. In conclusion, lung matrix stiffness is considerably inhomogeneous, and conventional decellularization procedures do not result in substantially different local stiffness in the acellular lung.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEC.2013.0325 | DOI Listing |
J Anat
January 2025
Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA.
The absence of a clear consensus on the definition and significance of fascia and the indiscriminate use of the term throughout the clinical and scientific literature has led to skepticism regarding its importance in the human body. To address this challenge, we propose that: (1) fasciae, and the fascial interstitia within them, constitute an anatomical system, defined as a layered body-wide multiscale network of connective tissue that allows tensional loading and shearing mobility along its interfaces; (2) the fascial system comprises four anatomical organs: the superficial fascia, musculoskeletal (deep) fascia, visceral fascia, and neural fascia; (3) these organs are further composed of anatomical structures, some of which are eponymous; (4) all these fascial organs and their structural components contain variable combinations and arrangements of the four classically defined tissues: epithelial, connective, muscle, and neural; (5) the overarching functions of the fascial system arise from the contrasting biomechanical properties of the two basic types of layers distributed throughout the system: one predominantly collagenous and relatively stiff, the other rich in hyaluronic acid and viscous, allowing for the free flow of fluid; (6) the topographical organization of these layers in different locations is related to local variations in function (e.g.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02138.
Liquid crystal elastomers (LCEs) exhibit reversible shape morphing behavior when cycled above their nematic-to-isotropic transition temperature. During extrusion-based 3D printing, LCE inks are subjected to coupled shear and extensional flows that can be harnessed to spatially control the alignment of their nematic director along prescribed print paths. Here, we combine experiment and modeling to elucidate the effects of ink composition, nozzle geometry, and printing parameters on director alignment.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Industrial Engineering, College of Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
Despite the extensive literature revealing various core structures that can enhance the impact resistance of composite panels, a comparative study illustrating the difference in performance of the various cores under same loading conditions is missing. The aim of this study is to determine the optimal core structure and design in terms of energy absorption under low-velocity impact using both numerical simulations and experimental testing for validation. Response surface analysis was used to design the experiments and analyse the panel's behaviour.
View Article and Find Full Text PDFCureus
December 2024
Clinical Research and Medical Writing, Meril Life Sciences Private Limited, Vapi, IND.
Aim The primary objective of the study was to evaluate the mid-term implant survivability, rate of revisions, and clinical and functional outcomes following patella resurfacing during total knee arthroplasty (TKA) utilizing posterior stabilized (PS) total knee system (TKS). Methods A prospective, single-arm, multi-center, post-marketing surveillance encompassed patients with end-stage primary knee osteoarthritis (OA) or inflammatory arthritis. The time points of the study included baseline, six weeks, six months, one year, and three years post-operatively.
View Article and Find Full Text PDFEur Heart J Imaging Methods Pract
January 2025
Department of Radiology, University of Michigan, 1500 E Medical Center Drive, CVC 5581, Ann Arbor, MI 48109, USA.
Aims: Aortic wall stiffening in ascending thoracic aortic aneurysm (aTAA) is common. However, the spatial and temporal relationships between stiffness, aortic size, and growth in aTAA remain unclear.
Methods And Results: In this single-centre retrospective study, we utilized vascular deformation mapping to extract multi-directional aortic motion, aortic distensibility, and aortic growth in a multi-planar fashion from multi-phasic ECG-gated computed tomography angiograms.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!