When nanoparticles interact with their environment, the nature of that interaction is governed largely by the properties of its outermost surface layer. Here, we exploit the exceptional properties of a common disaccharide, trehalose, which is well-known for its unique biological stabilization effects. To this end, we have developed a synthetic procedure that readily affords a polymer of this disaccharide, poly(methacrylamidotrehalose) or "poly(trehalose)" and diblock copolycations containing this polymer with 51 repeat units chain extended with aminoethylmethacrylamide (AEMA) at three degrees of polymerization (n = 34, 65, and 84). Two series of experiments were conducted to study these diblock copolymers in detail and to compare their properties to two control polymers [PEG-P(AEMA) and P(AEMA)]. First, we demonstrate that the poly(trehalose) coating ensures colloidal stability of polyplexes containing siRNA in the presence of high salt concentrations and serum proteins. Poly(trehalose) retains the ability of trehalose to lower the phase transition energy associated with water freezing and can protect siRNA polyplexes during freeze-drying, allowing complete nanoparticle resuspension without loss of biological function. Second, we show that siRNA polyplexes coated with poly(trehalose) have exceptional cellular internalization into glioblastoma cells that proceeds with zero-order kinetics. Moreover, the amount of siRNA delivered by poly(trehalose) block copolycations can be controlled by the siRNA concentration in cell culture media. Using confocal microscopy we show that trehalose-coated polyplexes undergo active trafficking in cytoplasm upon internalization and significant siRNA-induced target gene down-regulation was achieved with an IC50 of 19 nM. These findings coupled with a negligible cytotoxicity suggests that poly(trehalose) has the potential to serve as an important component of therapeutic nanoparticle formulations of nucleic acids and has great promise to be extended as a new coating for other nanobased technologies and macromolecules, in particular, those related to nanomedicine applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4027957 | PMC |
http://dx.doi.org/10.1021/ja404941p | DOI Listing |
Pharmaceutics
December 2024
Department of Agriculture, Forestry and Bioresources, College of Agriculture and Life Sciences, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
Background/objectives: In this study, HECP2k polymer, polyethylenimine2k (PEI2k)-modified hydroxyethyl cellulose (HEC) was utilized to form the nanocomplexes with receptor activator of nuclear factor k-B (RANK) siRNA and zoledronate (Zol) for osteoclast inhibition. HECP2k/(RANK siRNA + Zol) nanocomplexes prepared by simple mixing were anticipated to overcome the low transfection efficiency of siRNA and the low bioavailability of Zol.
Methods: The characterization of both HECP2k/(pDNA + Zol) nanocomplexes and HECP2k/(RANK siRNA + Zol) nanocomplexes was performed.
J Control Release
January 2025
Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA. Electronic address:
Uncontrolled inflammation is the driver of numerous lung diseases. Current treatments, including corticosteroids and bronchodilators, can be effective. However, they often come with notable side effects.
View Article and Find Full Text PDFJ Nanobiotechnology
December 2024
National Engineering Research Center of Ophthalmology and Optometry, School of Biomedical Engineering, School of Ophthalmology and Optometry, Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, China.
Up to 50% of individuals with uveal melanoma (UM), a frequent cancer of the eye, pass away from metastases. One of the major challenges in treating UM is the role of receptor tyrosine kinases (RTKs), which mediate the epithelial-mesenchymal transition (EMT) of tumors. RTKs are involved in binding multiple growth factors, leading to angiogenesis and vasculogenic mimicry (VM) phenomena.
View Article and Find Full Text PDFMolecules
November 2024
Department of Pathology, University of Maryland School of Medicine, 10 S. Pine St., Baltimore, MD 21201, USA.
Over 20 years have passed since siRNA was brought to the public's attention. Silencing genes with siRNA has been used for various purposes, from creating pest-resistant plants to treating human diseases. In the last six years, several siRNA therapies have been approved by the FDA, which solely target disease-inducing proteins in the liver.
View Article and Find Full Text PDFNano Lett
December 2024
Department of Pharmacy, Ludwig-Maximilians-University Munich, 81377 Munich, Germany.
Cationic polymers are known to efficiently deliver nucleic acids to target cells by encapsulating the cargo into nanoparticles. However, the molecular organization of these nanoparticles is often not fully explored. Yet, this information is crucial to understand complex particle systems and the role influencing factors play at later stages of drug development.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!