AI Article Synopsis

  • The Bcl-2/Bcl-xL/Bax and Ras/Raf/MEK/ERK (MAPK) pathways are often disrupted in cancers like acute lymphoblastic leukemia and acute myeloid leukemia, leading to uncontrolled cell growth and survival.
  • These molecular alterations not only contribute to oncogenic transformation but also result in therapy resistance, complicating treatment outcomes.
  • Analyzing these pathways provides insights for developing targeted therapies that could be more effective and less toxic than traditional chemotherapy, highlighting the potential for personalized cancer treatments based on individual genomic profiles.

Article Abstract

The Bcl-2/Bcl-xL/Bax and the Ras/Raf/MEK/ERK (MAPK) pathways are often deregulated in many human cancers and especially in acute lymphoblastic leukemia and acute myeloid leukemia. A result of molecular alterations of these pathways is uncontrolled cell growth and survival, ultimately resulting in oncogenic transformation and progression. Aberrant expression of Bcl-2/Bax and MAPK can lead to therapeutic resistance. In this review, the Bcl-2 and MAPK pathways are analyzed, focusing the attention on their molecular alterations, and the complex interactions between these signaling cascades are also analyzed. The observation that both MAPK and Bcl-2/Bax signaling play a central role in the pathogenesis of human cancer suggests that this kinase cascade represents a novel opportunity for the development of new anticancer targeted therapies designed to be less toxic than conventional chemotherapy. The evidence that they are often implicated in sensitivity and resistance to leukemia therapy suggests that characterization of the cancer genome may offer personalized cancer genomic information that can lead to the formulation of much more effective personalized therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1586/17474086.2013.827415DOI Listing

Publication Analysis

Top Keywords

mapk pathways
8
molecular alterations
8
bcl-2/bax ras/raf/mek/erk
4
ras/raf/mek/erk signaling
4
pathways
4
signaling pathways
4
pathways implications
4
implications pediatric
4
pediatric leukemia
4
leukemia pathogenesis
4

Similar Publications

Gymnostachyum febrifugum, a less-known ethnomedicinal plant from the Western Ghats of India, is used to treat various diseases and serves as an antioxidant and antibacterial herb. The present study aims to profile the cytotoxic phytochemicals in G. febrifugum roots using GC-MS/MS, in vitro confirmation of cytotoxic potential against breast cancer and an in silico study to understand the mechanism of action.

View Article and Find Full Text PDF

RSK4 promotes the metastasis of clear cell renal cell carcinoma by activating RUNX1-mediated angiogenesis.

Cancer Biol Ther

December 2025

State Key Laboratory of Cancer Biology, Department of Pathology, Xijing Hospital, Air Force Military Medical University, Xi'an, China.

Ribosomal S6 protein kinase 4 (RSK4), a member of the serine‒threonine kinase family, plays a vital role in the Ras‒MAPK pathway. This kinase is responsible for managing several cellular activities, including cell growth, proliferation, survival, and mobility. In this study, we observed higher RSK4 protein expression in clear cell renal cell carcinoma (ccRCC) than in normal kidney tissue, and the overexpression of RSK4 might predict poor outcomes for ccRCC patients.

View Article and Find Full Text PDF

The present study aimed to investigate the ability of an aqueous extract derived from mustard seed meal to counteract the effects of endotoxin lipopolysaccharide (LPS) on the intestinal epithelium. Caco-2 cells were cultured together with HT29-MTX and used as a cellular model to analyze critical intestinal parameters, such as renewal, integrity, innate immunity, and signaling pathway. Byproducts of mustard seed oil extraction are rich in soluble polysaccharides, proteins, allyl isothiocyanates, and phenolic acids, which are known as powerful antioxidants with antimicrobial and antifungal properties.

View Article and Find Full Text PDF

Structural Characterization and Immune Activation Capacity of Peptidoglycan from in RAW264.7 Cells.

Int J Mol Sci

December 2024

Key Laboratory of Feed Biotechnology of the Ministry of Agriculture and Rural Affairs, Risk Assessment Laboratory of Animal Product Quality Safety Feed Source Factors of the Ministry of Agriculture and Rural Affairs, Institute of Feed Research of Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Peptidoglycan (PGN) is a unique component of prokaryotic cell walls with immune-enhancing capacities. Here, we extracted PGN from , a by-product of amino acid fermentation, using the trichloroacetic acid (TCA) method. SDS-PAGE analysis confirmed the presence of PGN, with a band of approximately 28 kDa.

View Article and Find Full Text PDF

Neutrophil extracellular traps (NETs) formation is a key process in inflammatory diseases like gout, but the underlying molecular mechanisms remain incompletely understood. This study aimed to establish a model to examine the formation of NETs induced by monosodium urate (MSU) and phorbol 12-myristate 13-acetate (PMA) and to elucidate their molecular pathways. Laser confocal microscopy was used to visualize NET formation, while flow cytometry was employed to detect reactive oxygen species (ROS) production.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!