Therapeutic anticancer vaccines operate by eliciting or enhancing an immune response that specifically targets tumor-associated antigens. Although intense efforts have been made for developing clinically useful anticancer vaccines, only a few Phase III clinical trials testing this immunotherapeutic strategy have achieved their primary endpoint. Here, we report the results of a retrospective research aimed at clarifying the design of previously completed Phase II/III clinical trials testing therapeutic anticancer vaccines and at assessing the value of immunological monitoring in this setting. We identified 17 anticancer vaccines that have been investigated in the context of a completed Phase II/III clinical trial. The immune response of patients receiving anticancer vaccination was assessed for only 8 of these products (in 15 distinct studies) in the attempt to identify a correlation with clinical outcome. Of these studies, 13 were supported by a statistical correlation study (Log-rank test), and no less than 12 identified a positive correlation between vaccine-elicited immune responses and disease outcome. Six trials also performed a Cox proportional hazards analysis, invariably demonstrating that vaccine-elicited immune responses have a positive prognostic value. However, despite these positive results in the course of early clinical development, most therapeutic vaccines tested so far failed to provide any clinical benefit to cancer patients in Phase II/III studies. Our research indicates that evaluating the immunological profile of patients at enrollment might constitute a key approach often neglected in these studies. Such an immunological monitoring should be based not only on peripheral blood samples but also on bioptic specimens, whenever possible. The evaluation of the immunological profile of cancer patients enrolled in early clinical trials will allow for the identification of individuals who have the highest chances to benefit from anticancer vaccination, thus favoring the rational design of Phase II and Phase III studies. This approach will undoubtedly accelerate the clinical development of therapeutic anticancer vaccines.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3782518 | PMC |
http://dx.doi.org/10.4161/onci.26012 | DOI Listing |
J Pharm Anal
December 2024
MTA-HUN-REN TTK Lendület "Momentum" Peptide-Based Vaccines Research Group, Institute of Materials and Environmental Chemistry, Research Centre for Natural Sciences, Budapest, H-1117, Hungary.
The aim of the research is to increase the applicability of lipopeptides as drugs. To this end, non-ionic triblock copolymers, namely poloxamers, were applied. The physico-chemical properties of poloxamers vary depending on the length of the blocks.
View Article and Find Full Text PDFAsian Pac J Cancer Prev
January 2025
Experimental Therapy Department, Iraqi Center for Cancer and Medical Genetic Research. Mustansiriyah University, Baghdad, Iraq.
Background: The use of bacterial vaccines as a potential Bacterial-Based Cancer Therapy (BBCT) presents an innovative approach, transforming these vaccines into multifunctional tools capable of serving dual roles in medicine.
Materials And Methods: This study aimed to conduct in vitro, immunity-independent experiments to investigate the anticancer properties of vaccine-derived bacterial toxoids on various cancer cell lines. Six concentrations of the DTP vaccine (5 x 10-4, 25 x 10-5, 125 x 10-6, 625 x 10-7, 312 x 10-7, and 15 x 10-6 µg/ml) were tested on two cancer cell lines (SKG and HCAM) and a normal Rat Embryonic Fibroblast (REF) cell line.
Anticancer Agents Med Chem
January 2025
Department of Gynecology, Lanzhou University Second Hospital Lanzhou University, Lanzhou, 730030, China.
Cervical cancer is a significant global health threat, ranking as the fourth most common malignancy among women and resulting in over 300,000 deaths annually. Although screening and vaccination initiatives have led to a decline in incidence rates, treatment options for advanced or recurrent cervical cancer remain inadequate, often proving ineffective and costly. In this context, adenoviral therapy has emerged as a promising strategy to enhance therapeutic outcomes.
View Article and Find Full Text PDFNPJ Vaccines
January 2025
Jiangzhong Cancer Research Center, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, China.
Tumor-derived exosomes (TDEs) mediate oncogenic communication, which modifies target cells to reinforce a tumor-promoting microenvironment. TDEs support cancer progression by suppressing anti-tumor immune responses, promoting metastasis, and conferring drug resistance. Thus, targeting TDEs could improve the efficacy of anti-cancer treatments and control metastasis.
View Article and Find Full Text PDFPharmaceutics
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
In the original publication [...
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!