Efficient plant regeneration has been achieved from immature inflorescence derived callus cultures of salt tolerant grass Leptochloa fusca (L.). Young inflorescence explants displayed wide-ranging responses for callus induction and plant regeneration when subjected to different cold treatment durations and without cold treatment exposure (control) prior to its inoculation to MS medium supplemented with different concentrations/combinations of plant growth regulators (PGRs). The PGRs included auxins: 2, 4-dichlorophenoxy acetic acid (2, 4-D), picloram (Pic), 3, 6-dichloro-2-methoxy benzoic acid (dicamba) and cytokinins: Kinetin (KN), N6-benzyl adenine (BA). These treatments promoted different callus induction frequencies as well as various callus types such as type 1, type 2 and type 3. Induction of type 2 callus (white and compact) with potential for regeneration was obtained from cold treated (3 days at 10 °C) immature inflorescence cultured on MS medium containing 2.0 mg/l dicamba and 0.25 mg/l BA. The study demonstrated that 2.0 mg/l dicamba and 0.25 mg/l BA induced callus promoted improved frequency compared to zilch shoot regeneration response with other combinations involving 2, 4-D, picloram, KN and BA. Full strength MS supplemented with 2.0 mg/l NAA and 0.5 mg/l BA was found to be optimal for plant regeneration. The regeneration frequencies ranged from 13.8 ± 1.366 to 55.5 ± 2.766 with highest number of shoots (19.1 ± 0.560) per 50-60 mg of callus as explants after 28 days of inoculation. Plant regeneration was also obtained on the dicamba callus induction medium itself within 21 days inoculation of immature inflorescence explants. Half strength MS medium both semisolid and liquid devoid of plant growth regulators promoted highest frequency (92.8 ± 4.099 and 100 ± 0.00) of rooting in regenerated shoots. Plants with well developed roots were successfully transferred to pots and grown to maturity with normal flowering and seed set. This is the first report on induction of callus and subsequent plant regeneration in kallar grass using immature inflorescence explants.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3550551 | PMC |
http://dx.doi.org/10.1007/s12298-012-0134-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!