Impact of water deficit stress on biochemical characteristics of safflower cultivars.

Physiol Mol Biol Plants

Department of Agronomy and plant breeding, Arak Branch, Islamic Azad University, Arak, Iran.

Published: October 2012

Water deficit stress is one of the severe limitations of crop growth especially in arid and semiarid regions of the world as it effect the plant growth at all stages of development. In the present study, four safflower genotypes Esfahan native, Esfahan-14, PI537,598 and IL111 were tested for their growth and crop yield under water-deficit stress. A detailed biochemical analysis was carried out at various levels of irrigation to find out the genotypic variation and the activity of several enzymes known to play significant role under drought stress. A split plot experiment based on randomized complete blocks design was conducted at three levels of irrigation: 100 % (normal water requirement for safflower), 75 % and 50 %. A significant increase in the activity of SOD, CAT, GPX enzymes and the levels of ABA and proline was observed with an increase in the water stress level in the leaves of all the genotypes investigated. The highest increase in the activities of antioxidant enzymes and proline and ABA content with reduced electrolyte leakage was observed in the relatively drought tolerance native Esfahan cultivar. These results suggest that the cultivars that exhibit highest levels of antioxidant enzymes activity and proline and ABA content under water deficit conditions may provide better drought tolerance in safflower.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3550555PMC
http://dx.doi.org/10.1007/s12298-012-0129-3DOI Listing

Publication Analysis

Top Keywords

water deficit
12
deficit stress
8
levels irrigation
8
antioxidant enzymes
8
proline aba
8
aba content
8
drought tolerance
8
stress
5
impact water
4
stress biochemical
4

Similar Publications

Introduction: Plant physiology response and adaptation to drought stress has become a hotspot in plant ecology and evolution. possesses high ecological, ornamental and economic benefits. It has large root system and tolerance to cold, drought and poor soil.

View Article and Find Full Text PDF

Drought is a reoccurring natural phenomenon that presents significant challenges to agricultural production, ecosystem stability, and water resource management. The Central Highlands of Vietnam, a major region of industrial crops and vegetation ecosystems, has become increasingly vulnerable to drought impacts. Despite this vulnerability, limited research has explored the specific characteristics of drought and its seasonal effects on vegetation ecosystems in the region.

View Article and Find Full Text PDF

Various practical strategies have been employed to mitigate the detrimental effects of water deficit stress on plants such as application of nano-stimulants. Nanosilicon plays a crucial role in alleviating the deleterious impacts of both abiotic and biotic stresses in plants by modulating various phyto-morphological and physiological processes. This study aimed to examine the combined effects of drought stress and nanosilicon application on the morphological traits and essential oil content and compositions of hemp (Cannabis sativa L.

View Article and Find Full Text PDF

Background: We investigated chitosan's protective effects against tertiary butylhydroquinone (TBHQ)-induced toxicity in adult male rats, focusing on cognitive functions and oxidative stress in the brain, liver, and kidneys.

Methods: Rats were divided into four groups (n = 8/group): (1) Control, (2) Chitosan only, (3) TBHQ only, and (4) Chitosan + TBHQ.

Results: TBHQ exposure led to significant cognitive impairments and increased oxidative stress, marked by elevated malondialdehyde (MDA) and decreased superoxide dismutase (SOD) and glutathione (GSH) levels.

View Article and Find Full Text PDF

The search for neuroprotective compounds in lavender is driven by its traditional use for brain health, with antioxidant activity serving as a key mechanism in reducing oxidative stress and supporting cognitive function. Lavender's potential to protect neurons is based on its calming, anti-stress properties, which increase the brain's resistance to neurodegeneration. Although lavender is not a traditional medicinal plant in Ukraine, it is increasingly recognised for its medicinal properties and is widely cultivated in the country.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!