cAMP protein kinase phosphorylates the Mos1 transposase and regulates its activity: evidences from mass spectrometry and biochemical analyses.

Nucleic Acids Res

Innovation Moléculaire Thérapeutique, EA 6306, UFR Sciences Pharmaceutiques, Parc Grandmont, Université François Rabelais, 37200 Tours, France, Centre de Biophysique Moléculaire, UPR 4301 CNRS, Rue Charles Sadron, 45071 Orléans, France, Laboratoire Universitaire de Biodiversité et Ecologie Microbienne, IUT de Quimper, Université de Bretagne Occidentale, 6 rue de l'Université, 29000 Quimper, France and Biologie Cellulaire de la Synapse, INSERM U789, Ecole Normale Supérieure, 46 rue d'Ulm, 75005 Paris, France.

Published: January 2014

Genomic plasticity mediated by transposable elements can have a dramatic impact on genome integrity. To minimize its genotoxic effects, it is tightly regulated either by intrinsic mechanisms (linked to the element itself) or by host-mediated mechanisms. Using mass spectrometry, we show here for the first time that MOS1, the transposase driving the mobility of the mariner Mos1 element, is phosphorylated. We also show that the transposition activity of MOS1 is downregulated by protein kinase AMP cyclic-dependent phosphorylation at S170, which renders the transposase unable to promote Mos1 transposition. One step in the transposition cycle, the assembly of the paired-end complex, is specifically inhibited. At the cellular level, we provide evidence that phosphorylation at S170 prevents the active transport of the transposase into the nucleus. Our data suggest that protein kinase AMP cyclic-dependent phosphorylation may play a double role in the early stages of genome invasion by mariner elements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3902898PMC
http://dx.doi.org/10.1093/nar/gkt874DOI Listing

Publication Analysis

Top Keywords

protein kinase
12
mos1 transposase
8
mass spectrometry
8
kinase amp
8
amp cyclic-dependent
8
cyclic-dependent phosphorylation
8
phosphorylation s170
8
mos1
5
camp protein
4
kinase phosphorylates
4

Similar Publications

During chromosome segregation, the spindle assembly checkpoint (SAC) detects errors in kinetochore-microtubule attachments. Timely activation and maintenance of the SAC until defects are corrected is essential for genome stability. Here, we show that shugoshin (Sgo1), a conserved tension-sensing protein, ensures the maintenance of SAC signals in response to unattached kinetochores during mitosis in a basidiomycete budding yeast Cryptococcus neoformans.

View Article and Find Full Text PDF

Calcium-mediated mitochondrial fission and mitophagy drive glycolysis to facilitate arterivirus proliferation.

PLoS Pathog

January 2025

Key Laboratory of Animal Diseases Diagnostic and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China.

Mitochondria, recognized as the "powerhouse" of cells, play a vital role in generating cellular energy through dynamic processes such as fission and fusion. Viruses have evolved mechanisms to hijack mitochondrial function for their survival and proliferation. Here, we report that infection with the swine arterivirus porcine reproductive and respiratory syndrome virus (PRRSV), manipulates mitochondria calcium ions (Ca2+) to induce mitochondrial fission and mitophagy, thereby reprogramming cellular energy metabolism to facilitate its own replication.

View Article and Find Full Text PDF

Trazodone, dibenzoylmethane and tauroursodeoxycholic acid do not prevent motor dysfunction and neurodegeneration in Marinesco-Sjögren syndrome mice.

PLoS One

January 2025

Department of Neuroscience, Laboratory of Prion Neurobiology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milan, Italy.

There is no cure for Marinesco-Sjögren syndrome (MSS), a genetic multisystem disease linked to loss-of-function mutations in the SIL1 gene, encoding a BiP co-chaperone. Previously, we showed that the PERK kinase inhibitor GSK2606414 delays cerebellar Purkinje cell (PC) degeneration and the onset of ataxia in the woozy mouse model of MSS. However, GSK2606414 is toxic to the pancreas and does not completely rescue the woozy phenotype.

View Article and Find Full Text PDF

Background: Modulation of protein synthesis according to the physiological cues is maintained through tight control of Eukaryotic Elongation Factor 2 (eEF2), whose unique translocase activity is essential for cell viability. Phosphorylation of eEF2 at its Thr56 residue inactivates this function in translation. In our previous study we reported a novel mode of post-translational modification that promotes higher efficiency in T56 phosphorylation.

View Article and Find Full Text PDF

Loss of HNRNPK During Cell Senescence Linked to Reduced Production of CDC20.

Mol Cell Biol

January 2025

Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland, USA.

Cellular senescence is a complex biological response to sublethal damage. The RNA-binding protein HNRNPK was previously found to decrease prominently during senescence in human diploid fibroblasts. Here, analysis of the mechanisms leading to reduced HNRNPK abundance revealed that in cells undergoing senescence, mRNA levels declined transcriptionally and full-length HNRNPK protein was progressively lost, while the abundance of a truncated HNRNPK increased.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!