It is now evident that exercise training leads to increases in monocarboxylate transporter (MCT)1 and MCT4, but little is known about the mechanisms of coupling muscle contraction with these changes. The aim of this study was to investigate the effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) induced activation of AMP-activated protein kinase (AMPK) on MCT1, MCT4, and GLUT4 in denervated muscle. Protein levels of MCT4 and GLUT4 after 10 days of denervation were significantly decreased in mice gastrocnemius muscle, while MCT1 protein levels were not altered. AICAR treatment for 10 days significantly increased MCT4, and GLUT4 protein levels in innervated muscle as shown in previous studies. We found that the MCT1 protein level was also increased in AICAR treated innervated muscle. AICAR treatment prevented the decline in MCT4 and GLUT4 protein levels in denervated muscle. Thus, the current study suggests that MCT1 and MCT4 protein expression in muscles, as well as GLUT4, may be regulated by AMPK-mediated signal pathways, and AMPK activation can prevent denervation-induced decline in MCT4 protein.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717869 | PMC |
http://dx.doi.org/10.1007/s12576-013-0290-7 | DOI Listing |
J Transl Med
January 2025
Department of Biomedical and Biotechnological Sciences, Division of Medical Biochemistry, University of Catania, Catania, Italy.
Background: Clonal myeloproliferation and fibrotic transformation of the bone marrow (BM) are the pathogenetic events most commonly occurring in myelofibrosis (MF). There is great evidence indicating that tumor microenvironment is characterized by high lactate levels, acting not only as an energetic source, but also as a signaling molecule.
Methods: To test the involvement of lactate in MF milieu transformation, we measured its levels in MF patients' sera, eventually finding a massive accumulation of this metabolite, which we showed to promote the expansion of immunosuppressive subsets.
Andrology
December 2024
Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CIIPOP)/CI-IPOP@RISE (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center Raquel Seruca (Porto.CCC Raquel Seruca), Porto, Portugal.
Background: Testicular germ cell tumors are the most common solid malignancies in young men, with increasing incidence worldwide. Broadly classified into seminomas and non-seminomas, they exhibit distinct biological behaviors and responses to treatment. Although metabolic reprogramming is an acknowledged cancer hallmark, metabolic pathways in testicular germ cell tumors remain poorly understood.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America.
Front Endocrinol (Lausanne)
December 2024
Institute of Inflammation and Ageing, University of Birmingham, Birmingham, United Kingdom.
Background And Aim: Head and neck paragangliomas (HNPGN) are tumours that carry significant morbidity The role of the stroma in the pathogenesis of HNPGN is not completely understood. This study explores the profile of fibroblasts and macrophages in HNPGN.
Methods: Ten patients undergoing HNPGN surgery were recruited.
Int J Mol Sci
November 2024
Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.
The circadian gene is recognized for its regulatory effects on cell proliferation and lipid metabolism across various non-ruminant cells. This study investigates the influence of gene overexpression on goat rumen epithelial cells using a constructed pcDNA3.1- plasmid, assessing its impact on circadian gene expression, cell proliferation, and mRNA levels of short-chain fatty acid (SCFA) transporters, alongside genes related to lipid metabolism, cell proliferation, and apoptosis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!