It is now evident that exercise training leads to increases in monocarboxylate transporter (MCT)1 and MCT4, but little is known about the mechanisms of coupling muscle contraction with these changes. The aim of this study was to investigate the effect of 5-aminoimidazole-4-carboxamide-1-beta-D-ribofuranoside (AICAR) induced activation of AMP-activated protein kinase (AMPK) on MCT1, MCT4, and GLUT4 in denervated muscle. Protein levels of MCT4 and GLUT4 after 10 days of denervation were significantly decreased in mice gastrocnemius muscle, while MCT1 protein levels were not altered. AICAR treatment for 10 days significantly increased MCT4, and GLUT4 protein levels in innervated muscle as shown in previous studies. We found that the MCT1 protein level was also increased in AICAR treated innervated muscle. AICAR treatment prevented the decline in MCT4 and GLUT4 protein levels in denervated muscle. Thus, the current study suggests that MCT1 and MCT4 protein expression in muscles, as well as GLUT4, may be regulated by AMPK-mediated signal pathways, and AMPK activation can prevent denervation-induced decline in MCT4 protein.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10717869PMC
http://dx.doi.org/10.1007/s12576-013-0290-7DOI Listing

Publication Analysis

Top Keywords

mct1 mct4
16
mct4 glut4
16
protein levels
16
denervated muscle
12
ampk activation
8
monocarboxylate transporter
8
transporter mct1
8
mct4
8
protein
8
mct1 protein
8

Similar Publications

Background: Clonal myeloproliferation and fibrotic transformation of the bone marrow (BM) are the pathogenetic events most commonly occurring in myelofibrosis (MF). There is great evidence indicating that tumor microenvironment is characterized by high lactate levels, acting not only as an energetic source, but also as a signaling molecule.

Methods: To test the involvement of lactate in MF milieu transformation, we measured its levels in MF patients' sera, eventually finding a massive accumulation of this metabolite, which we showed to promote the expansion of immunosuppressive subsets.

View Article and Find Full Text PDF

Background: Testicular germ cell tumors are the most common solid malignancies in young men, with increasing incidence worldwide. Broadly classified into seminomas and non-seminomas, they exhibit distinct biological behaviors and responses to treatment. Although metabolic reprogramming is an acknowledged cancer hallmark, metabolic pathways in testicular germ cell tumors remain poorly understood.

View Article and Find Full Text PDF
Article Synopsis
  • - Lactate transport is vital for cancer cell survival, but current drugs targeting the MCT1 and MCT4 transporters have shown limited success in clinical applications, mostly due to issues with isoform expression in tumors and the lengthy time required for new inhibitors to reach human trials.
  • - Researchers conducted a drug screen using FDA-approved substances to find potential MCT inhibitors, identifying that several drug classes, including non-steroidal anti-inflammatory drugs (NSAIDs), can inhibit MCT1 with moderate effectiveness.
  • - Specifically, among continuing investigations on NSAIDs for their ability to inhibit MCT1, piroxicam emerged as a promising candidate with relevant dosages that could enhance anticancer therapy by potentially working alongside existing treatments.
View Article and Find Full Text PDF

Background And Aim: Head and neck paragangliomas (HNPGN) are tumours that carry significant morbidity The role of the stroma in the pathogenesis of HNPGN is not completely understood. This study explores the profile of fibroblasts and macrophages in HNPGN.

Methods: Ten patients undergoing HNPGN surgery were recruited.

View Article and Find Full Text PDF

Impact of Circadian Clock Gene Overexpression on Rumen Epithelial Cell Dynamics and VFA Transport Protein Expression.

Int J Mol Sci

November 2024

Laboratory of Metabolic Manipulation of Herbivorous Animal Nutrition, College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China.

The circadian gene is recognized for its regulatory effects on cell proliferation and lipid metabolism across various non-ruminant cells. This study investigates the influence of gene overexpression on goat rumen epithelial cells using a constructed pcDNA3.1- plasmid, assessing its impact on circadian gene expression, cell proliferation, and mRNA levels of short-chain fatty acid (SCFA) transporters, alongside genes related to lipid metabolism, cell proliferation, and apoptosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!