We explain a technique that recovers the structure and the modal weights of spatial modes of lasers from a limited number of spatial coherence measurements. Our approach interpolates the unobserved spatial coherence measurements via the low-rank matrix completion algorithm based on nuclear norm minimization and then extracts the set of modes via singular value decomposition. Numerical examples are provided on a variety of lasers to demonstrate the effectiveness of the method, and it is shown that the proposed method can further reduce the number of measurements by a factor of 2 for a moderate data size.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.38.003957 | DOI Listing |
Sensors (Basel)
December 2024
Research Center of Applied Electromagnetics, Nanjing University of Information Science and Technology, Nanjing 210044, China.
We present a novel photoreconfigurable metasurface designed for independent and efficient control of electromagnetic waves with identical incident polarization and frequency across the entire spatial domain. The proposed metasurface features a three-layer architecture: a top layer incorporating a gold circular split ring resonator (CSRR) filled with perovskite material and dual -shaped perovskite resonators; a middle layer of polyimide dielectric; and a bottom layer comprising a perovskite substrate with an oppositely oriented circular split ring resonator filled with gold. By modulating the intensity of a laser beam, we achieve autonomous manipulation of incident circularly polarized terahertz waves in both transmission and reflection modes.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Chemistry and Biochemistry, Queens College, Flushing, New York 11367, United States.
Semiconductor nanomaterials and nanostructured interfaces have important technological applications, ranging from fuel production to electrosynthesis. Their photocatalytic activity is known to be highly heterogeneous, both in an ensemble of nanomaterials and within a single entity. Photoelectrochemical imaging techniques are potentially useful for high-resolution mapping of photo(electro)catalytic active sites; however, the nanoscale spatial resolution required for such experiments has not yet been attained.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Physiology and Biophysics, Weill Cornell Medical College, New York, New York 10065, United States.
ModeHunter is a modular Python software package for the simulation of 3D biophysical motion across spatial resolution scales using modal analysis of elastic networks. It has been curated from our in-house Python scripts over the last 15 years, with a focus on detecting similarities of elastic motion between atomic structures, coarse-grained graphs, and volumetric data obtained from biophysical or biomedical imaging origins, such as electron microscopy or tomography. With ModeHunter, normal modes of biophysical motion can be analyzed with various static visualization techniques or brought to life by dynamics animation in terms of single or multimode trajectories or decoy ensembles.
View Article and Find Full Text PDFSmall Methods
January 2025
Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, 1 Bethel Valley Road, Oak Ridge, TN, TN 37830, USA.
Understanding ferroelectric domain wall dynamics at the nanoscale across a broad range of timescales requires measuring domain wall position under different applied electric fields. The success of piezoresponse force microscopy (PFM) as a tool to apply local electric fields at different positions and imaging their changing position, together with the information obtained from associated switching spectroscopies has fueled numerous studies of the dynamics of ferroelectric domains to determine the impact of intrinsic parameters such as crystalline order, defects and pinning centers, as well as boundary conditions such as environment. However, the investigation of sub-coercive reversible domain wall vibrational modes requires the development of new tools that enable visualizing domain wall motion under varying applied fields with high temporal and spatial resolution while also accounting for spurious electrostatic effects.
View Article and Find Full Text PDFChaos
January 2025
School of Mathematics and Statistics, Jiangsu Normal University, Xuzhou 221116, China.
We demonstrate that fundamental nonlinear localized modes can exist in the Chen-Lee-Liu equation modified by several parity-time (PT) symmetric complex potentials. The explicit formula of analytical solitons is derived from the physically interesting Scarf-II potential, and families of spatial solitons in internal modes are numerically captured under the optical lattice potential. By the spectral analysis of linear stability, we observe that these bright solitons can remain stable across a broad scope of potential parameters, despite the breaking of the corresponding linear PT-symmetric phases.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!