This study analyzed the composition of a methane-generating microbial community and the corresponding active members during the transformation of three target substrates (food waste, cellulose or xylan) by barcoded 454 pyrosequencing of the bacterial and archaeal 16S rRNA genes in the DNA and RNA. The number of operational taxonomic units at 97% similarity for bacteria and archaea ranged from 162-261 and 31-166, respectively. Principal coordinates analysis and Venn diagram revealed that there were significant differences in the microbial community structure between the active members transforming each substrate and the inoculum. The active bacterial populations detected were those required for the hydrolysis of the amended substrate. The active archaeal populations were methanogens but the ratio of Methanosarcinales and Methanomicrobiales varied between the cultures. Overall, results of this study showed that a subset of the populations became active and altered in relative abundance during methane production according to the amended substrate.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2013.09.017DOI Listing

Publication Analysis

Top Keywords

active bacterial
8
bacterial archaeal
8
microbial community
8
active members
8
amended substrate
8
active
6
substrate
4
substrate induced
4
induced emergence
4
emergence active
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!