CD4+ CD25+ regulatory T cells (Tregs) strongly influence the early and late autoimmune responses to meiotic germ cell antigens (MGCA) and the gonadal immunopathology in vasectomized mice. This is supported by the published and recently acquired information presented here. Within 24h of unilateral vasectomy (uni-vx) the ipsilateral epididymis undergoes epithelial cell apoptosis followed by necrosis, severe inflammation, and granuloma formation. Unexpectedly, vasectomy alone induced MGCA-specific tolerance. In contrast, uni-vx plus simultaneous Treg depletion resulted in MGCA-specific autoimmune response and bilateral autoimmune orchitis. Both tolerance and autoimmunity were strictly linked to the early epididymal injury. We now discovered that testicular autoimmunity in uni-vx mice did not occur when Treg depletion was delayed by one week. Remarkably, this delayed Treg depletion also prevented tolerance induction. Therefore, tolerance depends on a rapid de novo Treg response to MGCA exposed after vasectomy. Moreover, tolerance was blunted in mice genetically deficient in PD-1 ligand, suggesting the involvement of induced Treg. We conclude that pre-existing natural Treg prevents post-vasectomy autoimmunity, whereas vasectomy-induced Treg maintains post-vasectomy tolerance. We further discovered that vasectomized mice were still resistant to autoimmune orchitis induction for at least 12-16 months; thus, tolerance is long-lasting. Although significant sperm autoantibodies of low titers became detectable in uni-vx mice at 7 months, the antibody titers fluctuated over time, suggesting a dynamic "balance" between the autoimmune and tolerance states. Finally, we observed severe epididymal fibrosis and hypo-spermatogenesis at 12 months after uni-vx: findings of highly critical clinical significance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3965253PMC
http://dx.doi.org/10.1016/j.jri.2013.08.004DOI Listing

Publication Analysis

Top Keywords

treg depletion
12
regulatory cells
8
vasectomized mice
8
tolerance
8
autoimmune orchitis
8
uni-vx mice
8
treg
7
autoimmune
5
mice
5
uni-vx
5

Similar Publications

Sepsis is characterized by a concomitant early pro-inflammatory response by immune cells to an infection, and an opposing anti-inflammatory response that results in protracted immunosuppression. The primary pathological event in sepsis is widespread programmed cell death, or cellular self-sacrifice, of innate and adaptive immune cells, leading to profound immunological suppression. This severe immune dysfunction hampers effective primary pathogen clearance, thereby increasing the risk of secondary opportunistic infections, latent viral reactivation, multiple organ dysfunction, and elevated mortality.

View Article and Find Full Text PDF

Background & Aims: Hepatic immune imbalance is crucial for driving metabolic dysfunction-associated steatotic liver disease (MASLD) progression. However, the role of hepatic regulatory T cells (Tregs) in MASLD initiation and the mechanisms responsible for their change are not completely understood.

Methods: A mouse model subjected to a short-term high-fat diet (HFD) to mimic early steatosis, along with liver biopsy samples from patients with simple steatosis, and macrophage-specific Notch1-knockout mice (Notch1), were used to investigate the role of Tregs in early MASLD and the effect of hepatic macrophage Notch1 signaling on Treg frequency.

View Article and Find Full Text PDF

Regulatory T cells (Tregs) contribute significantly to the immunosuppressive nature of the tumor microenvironment which is a main barrier for immunotherapies of solid cancers. Reducing Treg numbers enhances anti-tumor immune responses but current depletion strategies also impair effector T cells (Teffs), potentially leading to reduced anti-tumor immunity and/or autoimmune diseases. CD137 has been identified as the most differentially expressed gene between peripheral Tregs and intratumoral Tregs in virtually all solid cancers.

View Article and Find Full Text PDF

Regulatory T (T) cells are a suppressive subset of CD4 T cells that maintain immune homeostasis and restrain inflammation. Three decades after their discovery, the promise of strategies to harness T cells for therapy has never been stronger. Multiple clinical trials seeking to enhance endogenous T cells or deliver them as a cell-based therapy have been performed and hint at signs of success, as well as to important limitations and unanswered questions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!