This paper describes a portable microwave assisted extraction apparatus (PMAE) for extraction of bioactive compounds especially essential oils and aromas directly in a crop or in a forest. The developed procedure, based on the concept of green analytical chemistry, is appropriate to obtain direct in-field information about the level of essential oils in natural samples and to illustrate green chemical lesson and research. The efficiency of this experiment was validated for the extraction of essential oil of rosemary directly in a crop and allows obtaining a quantitative information on the content of essential oil, which was similar to that obtained by conventional methods in the laboratory.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chroma.2013.09.053DOI Listing

Publication Analysis

Top Keywords

portable microwave
8
microwave assisted
8
assisted extraction
8
concept green
8
green analytical
8
analytical chemistry
8
essential oils
8
directly crop
8
essential oil
8
extraction
4

Similar Publications

Ti-co-Ce oxide decorated chitosan fiber oxidase mimic identified for portable monitoring of S, CrO and Fe assisted with a smartphone.

Int J Biol Macromol

December 2024

Key Laboratory of Catalytic Conversion and Clean Energy in Universities of Shandong Province & Key Laboratory of Life-Organic Analysis of Shandong Province, School of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, PR China. Electronic address:

Environmental safety and protection is one of the most concerned topics nowadays. To conveniently monitor toxic S/CrO and to regulate bioactive Fe, Ti-co-Ce oxide decorated chitosan fiber (Ti-co-Ce ox@CC) was developed using microwave-assisted hydrothermal method. The integration of chitosan fiber and nano Ti-co-Ce oxide endowed Ti-co-Ce ox@CC with superior oxidase-like activity and improved water-dispersibility.

View Article and Find Full Text PDF

A method is presented for high-precision chemical detection that integrates quantum sensing with droplet microfluidics. Using nanodiamonds (ND) with fluorescent nitrogen-vacancy (NV) centers as quantum sensors, rapidly flowing microdroplets containing analyte molecules are analyzed. A noise-suppressed mode of optically detected magnetic resonance is enabled by pairing controllable flow with microwave control of NV electronic spins, to detect analyte-induced signals of a few hundredths of a percent of the ND fluorescence.

View Article and Find Full Text PDF

Purpose: Mild Traumatic brain injury is classified based on Glasgow Coma Scale (GCS 13-15), it also involves transient alteration of brain function, which may lead to severe short- and long-term sequelae. When treating a patient with a mild head injury outside the hospital, it is of crucial importance to decide whether to transport him to a center without neurosurgery or to a center equipped with neurosurgery (primary centralization). Recent decades have seen exploration of portable, non-invasive devices for intracranial injury and stroke detection, with microwave frequency electromagnetic field technology showing promising clinical outcomes.

View Article and Find Full Text PDF

Effect of CNF ratio and pressure on structural and electrochemical performance of hybrid hydrogel for flexible free-standing electrode and sensors.

Carbohydr Polym

February 2025

State key laboratory base of eco-chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao, Shandong province 266042, PR China. Electronic address:

Article Synopsis
  • A 2D flexible hydrogel (GO/CNF) is created by combining graphene oxide (GO) with cellulose nanofiber (CNF) using microwave-assisted hydrothermal methods, resulting in a superhydrophilic material with a layered structure.
  • * The optimal mass ratio of GO to CNF is 3:1, leading to a specific capacitance of 295 F/g and improved electrochemical performance when used as free-standing electrodes in a three-electrode system.
  • * The enhanced properties of the hydrogel, especially at a press pressure that increases hydrophilicity, suggest its potential for use in flexible solid-state supercapacitors, wearable electronics, and biological signal detection with a high energy density of 20.6
View Article and Find Full Text PDF

Next-generation 2D materials, such as transition metal carbides and nitrides (MXenes), have received increasing attention owing to their physicochemical properties. In this study, we synthesized highly intense fluorescent materials, nitrogen-doped MXene quantum dots (N-MQDs) using an easy and less time-consuming microwave-assisted method. These N-MQDs are spherical, fluorescent, and highly sensitive materials, as confirmed by high-resolution transmission electron microscopy, atomic force microscopy, UV-visible, fluorescence, Fourier transform infrared spectroscopy, X-ray diffraction, Raman spectroscopy, zeta potential, and contact angle measurements.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!