Gravity reduction affects the energetics and natural speed of walking and running. But, it is less clear how segmental coordination is altered. Various devices have been developed in the past to study locomotion in simulated reduced gravity. However, most of these devices unload only the body center of mass. The authors reduced the effective gravity acting on the stance or swing leg to 0.16g using different simulators. Locomotion under these conditions was associated with a reduction in the foot velocity and significant changes in angular motion. Moreover, when simulated reduced gravity directly affected the swing limb, it resulted in significantly slower swing and longer foot excursions, suggesting an important role of the swing phase dynamics in shaping locomotor patterns.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1080/00222895.2013.833080 | DOI Listing |
J Orthop Surg Res
January 2025
Department of Orthopedic Surgery, Beijing Chaoyang Hospital, Capital Medical University of China, Gongti South Rd, No. 8, Beijing, 100020, China.
Objective: This study aims to investigate changes in matrix metalloproteinase (MMP) and tissue inhibitor of metalloproteinase (TIMP) levels in the intervertebral discs of New Zealand white rabbits under simulated overload and microgravity conditions, focusing on the expression of MMP1, MMP3, and TIMP1. The findings aim to provide a theoretical foundation for preventing and delaying lumbar disc degeneration in these environments.
Methods: Overload was simulated using an animal centrifuge, and microgravity was mimicked through tail suspension.
Spine (Phila Pa 1976)
January 2025
Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio, USA.
Study Design: Prospective cohort study.
Objective: This study aimed to investigate the durability of postural stability after ASD correction surgery and its' association with clinical outcomes.
Summary Of Background Data: The prevalence of symptomatic adult spinal deformity (ASD) necessitates surgical intervention, aiming to correct global spinal balance and spinopelvic parameters.
J Hazard Mater
January 2025
School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, PR China. Electronic address:
Groundwater is widely threatened by hazardous manganese and ammonia. In present study, a novel gravity-driven fixed-bed ceramic membrane filtration (GDFBCM) with critical PAC-MnOx-ceramsite filters was built to address these issues. Static ceramsite filters in GDCM significantly increased membrane flux from 11 L/m·h to 18 L/m·h on the 50th day of filtration.
View Article and Find Full Text PDFNat Commun
January 2025
Washington University in St. Louis, Saint Louis, MO, USA.
In-space biomanufacturing provides a sustainable solution to facilitate long-term, self-sufficient human habitation in extraterrestrial environments. However, its dependence on Earth-supplied feedstocks renders in-space biomanufacturing economically nonviable. Here, we develop a process termed alternative feedstock-driven in-situ biomanufacturing (AF-ISM) to alleviate dependence on Earth-based resupply of feedstocks.
View Article and Find Full Text PDFWearable Technol
December 2024
Sensory Motor Systems Lab, Department of Health Sciences and Technology, ETH Zürich, Zürich, Switzerland.
Cable-driven exosuits have the potential to support individuals with motor disabilities across the continuum of care. When supporting a limb with a cable, force sensors are often used to measure tension. However, force sensors add cost, complexity, and distal components.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!