Reconstitution of rat liver 60S ribosomal subunits following disassembly by dimethylmaleic anhydride.

Mol Cell Biochem

Centro de Biología Molecular, Universidad Autónoma de Madrid, Spain.

Published: February 1990

Modification of 60S ribosomal subunits from rat liver with dimethylmaleic anhydride (60 mumols/ml) is accompanied by release of 35% of the protein. The acidic ribosomal proteins, as well as 9 basic proteins, are selectively liberated from the ribosomal subunits. Reconstitution of the protein-deficient particles with the corresponding split proteins is accompanied by substantial recovery of the original polyphenylalanine synthetic activity. The described reconstitution procedure can be used to investigate the roles played by the released proteins and the functional similarities of proteins from different sources. Hybrid reconstitution of residual ribosomal particles from rat liver or yeast with the corresponding heterologous split proteins produces subunits which have incorporated heterologous proteins but are inactive in polyphenylalanine synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/BF00218133DOI Listing

Publication Analysis

Top Keywords

rat liver
12
ribosomal subunits
12
60s ribosomal
8
dimethylmaleic anhydride
8
split proteins
8
proteins
7
ribosomal
5
reconstitution
4
reconstitution rat
4
liver 60s
4

Similar Publications

The pineal gland secretes melatonin, which regulates various physiological processes; damage to this gland disrupts these functions. This study aimed to investigate the effect of nonylphenol on the pineal gland and the pituitary-adrenal axis, which is associated with this system. The study was initiated using Wistar albino male rats on their postnatal 21st day, a critical developmental stage for endocrine regulation.

View Article and Find Full Text PDF

The main molecular mechanisms of the protective effect of minor bioactive compounds (BAC) of food, including rutin and hesperidin, along with antiradical and antioxidant activity, include their interaction with transcription factors modulating the functional state of the organism defense systems, one of which is the system of xenobiotic metabolizing enzymes. However, the data on their combined action are limited. of the research was to study the effect of rutin and hesperidin on the activity and gene expression of cytochrome P450 isoforms 1A and 3A (CYP1A1, CYP1A2, CYP3A) in rat liver at their separate and combined intake.

View Article and Find Full Text PDF

Despite the use of yeast β-glucans in food and dietary supplements, there is insufficient data on their effect on the metabolism of vitamins and mineral elements. of the study was to evaluate the effect of β-glucans from Saccharomyces cerevisiae in the diet of growing rats on the absorption of micronutrients in animals deficient in vitamins D, group B and trace elements (iron, copper, zinc). .

View Article and Find Full Text PDF

Therapeutic drugs can sometimes cause adverse effects in a nonclinical species that do not translate to other species, including human. Species-specific (rat, dog, and human) in vitro liver spheroids were employed to understand the human relevance of cholestatic liver injury observed with a selective estrogen receptor degrader (amcenestrant) in dog, but not in rat, during preclinical development. Amcenestrant showed comparable cytotoxicity in liver spheroids from all three species; however, its M5 metabolite (RA15400562) showed dog preferential cytotoxicity after seven days of treatment.

View Article and Find Full Text PDF

Objective: This study aims to investigate the preventive effect of walnut oil as medicinal food on abnormal lipid metabolism and its influence on liver metabolites and intestinal flora.

Methods: The rat model of abnormal lipid metabolism was established by feeding high-fat diet and administering a high-fat emulsion via gavage. The rats were randomly assigned to one of the five groups: the normal group (ND), the model group (HFD), and three walnut oil intervention groups differing in dosage [low-dose (OL, 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!