The interactions of killer Ig-like receptor 2D (KIR2D) with HLA-C ligands contribute to functional NK cell education and regulate NK cell functions. Although simple alloreactive rules have been established for inhibitory KIR2DL, those governing activating KIR2DS function are still undefined, and those governing the formation of the KIR2D repertoire are still debated. In this study, we investigated the specificity of KIR2DL1/2/3 and KIR2DS1/2, dissected each KIR2D function, and assessed the impact of revisited specificities on the KIR2D NK cell repertoire formation from a large cohort of 159 KIR and HLA genotyped individuals. We report that KIR2DL2(+) and KIR2DL3(+) NK cells reacted similarly against HLA-C(+) target cells, irrespective of C1 or C2 allele expression. In contrast, KIR2DL1(+) NK cells specifically reacted against C2 alleles, suggesting a larger spectrum of HLA-C recognition by KIR2DL2 and KIR2DL3 than KIR2DL1. KIR2DS2(+) KIR2DL2(-) NK cell clones were C1-reactive irrespective of their HLA-C environment. However, when KIR2DS2 and KIR2DL2 were coexpressed, NK cell inhibition via KIR2DL2 overrode NK cell activation via KIR2DS2. In contrast, KIR2DL1 and KIR2DS2 had an additive enhancing effect on NK cell responses against C1C1 target cells. KIR2DL2/3/S2 NK cells predominated within the KIR repertoire in KIR2DL2/S2(+) individuals. In contrast, the KIR2DL1/S1 NK cell compartment is dominant in C2C2 KIR2DL2/S2(-) individuals. Moreover, our results suggest that together with KIR2DL2, activating KIR2DS1 and KIR2DS2 expression limits KIR2DL1 acquisition on NK cells. Altogether, our results suggest that the NK cell repertoire is remolded by the activating and inhibitory KIR2D and their cognate ligands.

Download full-text PDF

Source
http://dx.doi.org/10.4049/jimmunol.1301580DOI Listing

Publication Analysis

Top Keywords

cell repertoire
12
cell
10
spectrum hla-c
8
hla-c recognition
8
killer ig-like
8
ig-like receptor
8
kir2dl2 kir2dl3
8
kir2d cell
8
repertoire formation
8
cells reacted
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!