Primary alveolar epithelial cells play a pivotal role in lung research, particularly when focusing on gas exchange, barrier function, and transepithelial transport processes. However, efficient transfection of primary alveolar epithelial cells continues to be a major challenge. In the present study, we applied nucleofection, a novel method of gene and oligonucleotide delivery to the nucleus of cells by electroporation, to achieve highly efficient transfection of primary alveolar epithelial type II (ATII) cells. To quantify the amount of ATII cells effectively transfected, we applied a plasmid expressing GFP and assessed the amount of GFP-expressing cells by flow cytometry. Analysis of the nucleofected ATII cells revealed a concentration-dependent transfection efficiency of up to 50% when using 3-8 μg plasmid DNA without affecting cell viability. Nucleofection of cultured A549 and H441 cells yielded similar transfection rates. Importantly, nucleofection of ATII cells did not interfere with the integrity of ATII monolayers even with use of relatively high concentrations of plasmid DNA. In subsequent studies, we also efficiently delivered small interfering RNAs to ATII cells by nucleofection, thereby silencing Akt and the multiligand receptor megalin, which has been recently shown to play a key role in removal of excess protein from the alveolar space, and effectively inhibited megalin-driven uptake and transcellular transport of albumin in ATII cells. Thus we report successful transfection of primary rat alveolar epithelial cells with both plasmids and oligonucleotides via nucleofection with high viability and consistently good transfection rates without impairing key physiological properties of the cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/ajplung.00191.2013 | DOI Listing |
J Transl Med
January 2025
Emergency Department, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630, China.
Background: Acute respiratory distress syndrome (ARDS) is a life-threatening and heterogeneous disorder leading to lung injury. To date, effective therapies for ARDS remain limited. Sepsis is a frequent inducer of ARDS.
View Article and Find Full Text PDFRespir Res
December 2024
Department of Pediatrics, Shengjing Hospital of China Medical University, Shenyang, Liaoning, China.
Backgroud: Recent studies have reported mitochondrial damage and metabolic dysregulation in BPD, but the changes in mitochondrial dynamics and glucose metabolic reprogramming in ATII cells and their regulatory relationship have not been reported.
Methods: Neonatal rats in this study were divided into model (FIO2:85%) and control (FIO2: 21%) groups. Lung tissues were extracted at 3, 7, 10 and 14 postnatal days and then conducted HE staining for histopathological observation.
Cell Mol Life Sci
December 2024
Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, People's Republic of China.
Asthma is a chronic inflammatory respiratory disease characterized by recurrent breathing difficulties caused by airway obstruction and hypersensitivity. Although there is diversity in their specific mechanisms, microRNAs (miRNAs) have a significant impact on the development of asthma. Currently, the contribution of miR-130b-3p to asthma remains elusive.
View Article and Find Full Text PDFAm J Respir Cell Mol Biol
December 2024
Massachusetts General Hospital, Pediatrics, Boston, Massachusetts, United States;
Congenital diaphragmatic hernia (CDH) is characterized by incomplete closure of the diaphragm. While the ensuing compression to the fetal lung causes lung hypoplasia, specific cellular phenotypes and developmental signaling defects in the alveolar epithelium in CDH are not fully understood. Employing lung samples from human CDH, a surgical lamb model and a nitrogen rat model, we investigate whether lung compression impairs alveolar epithelial differentiation and Yes-associated protein (YAP)-mediated mechanosensing.
View Article and Find Full Text PDFInt Immunopharmacol
January 2025
Department of Respiratory and Critical Medicine, the Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou, China. Electronic address:
Background: Mechanical ventilation is an important treatment in medical treatment, but it may cause or aggravate lung injury, which is called ventilator-induced lung injury (VILI). Studies have shown that CAVIN2 plays an important role in regulating inflammatory responses and cell death. However, its functional mechanism in VILI remains unclear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!