Introduction: Radiation-induced pneumonitis and fibrosis have restricted radiotherapy for lung cancer. In a preclinical lung tumor model, soy isoflavones showed the potential to enhance radiation damage in tumor nodules and simultaneously protect normal lung from radiation injury. We have further dissected the role of soy isoflavones in the radioprotection of lung tissue.
Methods: Naive Balb/c mice were treated with oral soy isoflavones for 3 days before and up to 4 months after radiation. Radiation was administered to the left lung at 12 Gy. Mice were monitored for toxicity and breathing rates at 2, 3, and 4 months after radiation. Lung tissues were processed for histology for in situ evaluation of response.
Results: Radiation caused damage to normal hair follicles, leading to hair loss in the irradiated left thoracic area. Supplementation with soy isoflavones protected mice against radiation-induced skin injury and hair loss. Lung irradiation also caused an increase in mouse breathing rate that was more pronounced by 4 months after radiation, probably because of the late effects of radiation-induced injury to normal lung tissue. However, this effect was mitigated by soy isoflavones. Histological examination of irradiated lungs revealed a chronic inflammatory infiltration involving alveoli and bronchioles and a progressive increase in fibrosis. These adverse effects of radiation were alleviated by soy isoflavones.
Conclusion: Soy isoflavones given pre- and postradiation protected the lungs against adverse effects of radiation including skin injury, hair loss, increased breathing rates, inflammation, pneumonitis and fibrosis, providing evidence for a radioprotective effect of soy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3800250 | PMC |
http://dx.doi.org/10.1097/JTO.0b013e3182a4713e | DOI Listing |
Food Chem
January 2025
Laboratory of Nutrition and Functional Food, College of Food Science and Engineering, Jilin University, Changchun 130062, PR China. Electronic address:
Herein, nonhydrated phospholipids (NHPs) were removed from soybean oil using three silica adsorbents modified using aminopolycarboxylic acid ligands. The removal rate of NHPs was 62.98 %.
View Article and Find Full Text PDFMolecules
January 2025
Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China.
More than 70% of cancer patients receive radiotherapy during their treatment, with consequent various side effects on normal cells due to high ionizing radiation doses despite tumor shrinkage. To date, many radioprotectors and radiosensitizers have been investigated in preclinical studies, but their use has been hampered by the high toxicity to normal cells or poor tumor radiosensitization effects. Genistein is a naturally occurring isoflavone found in soy products.
View Article and Find Full Text PDFFish Physiol Biochem
January 2025
Fish Nutrition, Biochemistry and Physiology Division, ICAR-Central Institute of Fisheries Education, Versova, Andheri West, Mumbai, 400061, Maharashtra, India.
A 60-day feeding trial was conducted to evaluate the combined effect of dietary soy phytoestrogens, specifically genistein and daidzein, on the gonadal recrudescence and maturation of male Cyprinus carpio (Linnaeus, 1758). Adult male C. carpio (60 ± 10 g) were fed with a diet with no added genistein or daidzein (C), 110 mg/100 mg genistein (GL), 210 mg/100 g genistein (GH), 4 mg/100 g daidzein (DL), 8 mg/100 g daidzein (DH), combination of 110 mg/100 mg genistein and 4 mg/100 g daidzein (DGL, equivalent to 17.
View Article and Find Full Text PDFNPJ Sci Food
January 2025
Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, PR China.
As a form of skin cancer, melanoma's incidence rate is continuing to rise globally. Therefore, there is an urgent need to find new agents to improve survival in melanoma patients. Isoflavones, a class of phytoestrogens, are primarily found in soy and other legumes.
View Article and Find Full Text PDFPlant Cell Physiol
December 2024
RIKEN Center for Sustainable Resource Science, Yokohama 230-0045, Japan.
Soybean (Glycine max) is a leguminous crop cultivated worldwide that accumulates high levels of isoflavones. Although previous research has often focused on increasing the soybean isoflavone content because of the estrogen-like activity of dietary soy in humans, the rapidly increasing demand for soybean as a plant-based meat substitute has raised concerns about excessive isoflavone intake. Therefore, the production of isoflavone-free soybean has been anticipated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!