Pivotal role of augmented αB-crystallin in tumor development induced by deficient TSC1/2 complex.

Oncogene

State Key Laboratory of Medical Molecular Biology, Department of Physiology and Pathophysiology, Institute of Basic Medical Sciences and School of Basic Medicine, Graduate School of Peking Union Medical College, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China.

Published: August 2014

Tuberous sclerosis complex 1 (TSC1) and TSC2 are suppressors of mechanistic target of rapamycin (mTOR). mTOR is the major component of two protein complexes: mTOR complex 1 (mTORC1) and mTORC2. Inactive mutation of either TSC1 or TSC2 unleashes mTOR signaling and consequently causes TSC, a benign tumor syndrome affecting multiple organs. We report here that expression of αB-crystallin was upregulated in Tsc1-/- or Tsc2-/- mouse embryonic fibroblasts, Eker rat uterine leiomyoma-derived Tsc2-deficient ELT3 cells, mutant Tsc2-associated mouse kidney tumors, and human lung lymphangioleiomyomatosis nodules. αB-crystallin was transcriptionally activated by mTOR complex 2 (mTORC2): nuclear factor-kappa B (NFκB) signaling cascade. The augmented αB-crystallin was critical for the migration, invasion and apoptotic resistance of Tsc2-defective cells. Disruption of αB-crystallin suppressed Tsc2-null cell proliferation and tumorigenesis. Therefore, enhanced αB-crystallin has an essential role in TSC1/2 complex deficiency-mediated tumorigenesis, and inhibition of αB-crystallin may complement the current therapy for TSC.

Download full-text PDF

Source
http://dx.doi.org/10.1038/onc.2013.401DOI Listing

Publication Analysis

Top Keywords

augmented αb-crystallin
8
tsc1/2 complex
8
tsc1 tsc2
8
mtor complex
8
αb-crystallin
7
complex
5
mtor
5
pivotal role
4
role augmented
4
αb-crystallin tumor
4

Similar Publications

Multi-Energy Evaluation of Image Quality in Spectral CT Pulmonary Angiography Using Different Strength Deep Learning Spectral Reconstructions.

Acad Radiol

December 2024

Radiomics and Augmented Intelligence Laboratory (RAIL), Department of Radiology and the Norman Fixel Institute for Neurological Diseases, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., S.E.M., J.C.P., E.Y.A., B.H., R.F.); Department of Radiology, University of Florida College of Medicine, Gainesville, FL (M.H-S., H.S.S., A.G.R., J.C.P., E.Y.A., B.H., R.F.); Division of Medical Physics, University of Florida College of Medicine, Gainesville, FL (R.F.); Department of Neurology, Division of Movement Disorders, University of Florida College of Medicine, Gainesville, FL (R.F.); Department of Otolaryngology - Head and Neck Surgery, McGill University, Montreal, Quebec, Canada (R.F.); Department of Radiology, AdventHealth Medical Group, Maitland, FL (R.F.). Electronic address:

Rationale And Objectives: To evaluate and compare image quality of different energy levels of virtual monochromatic images (VMIs) using standard versus strong deep learning spectral reconstruction (DLSR) on dual-energy CT pulmonary angiogram (DECT-PA).

Materials And Methods: A retrospective study was performed on 70 patients who underwent DECT-PA (15 PE present; 55 PE absent) scans. VMIs were reconstructed at different energy levels ranging from 35 to 200 keV using standard and strong levels with deep learning spectral reconstruction.

View Article and Find Full Text PDF

Chronic hyperoxia during early postnatal development depresses breathing when neonatal rats are returned to room air and causes long-lasting attenuation of the hypoxic ventilatory response (HVR). In contrast, little is known about the control of breathing of juvenile or adult mammals after chronic exposure to moderate hyperoxia later in life. Therefore, Sprague-Dawley rats were exposed to 60% O for 7 days (juveniles) or for 4 and 14 days (adults) and ventilation was measured by whole-body plethysmography immediately after the exposure or following a longer period of recovery in room air.

View Article and Find Full Text PDF

Background: This paper reports on the outcomes of a proof-of-principle study for the Exposure Therapy Consortium, a global network of researchers and clinicians who work to improve the effectiveness and uptake of exposure therapy. The study aimed to test the feasibility of the consortium's big-team science approach and test the hypothesis that adding post-exposure processing focused on enhancing threat reappraisal would enhance the efficacy of a one-session large-group interoceptive exposure therapy protocol for reducing anxiety sensitivity.

Methods: The study involved a multi-site cluster-randomized controlled trial comparing exposure with post-processing (ENHANCED), exposure without post-processing (STANDARD), and a stress management intervention (CONTROL) in students with elevated anxiety sensitivity.

View Article and Find Full Text PDF

Chimeric Peptide-Engineered Polyprodrug Enhances Cytotoxic T Cell Response by Inducing Immunogenic Cell Death and Upregulating Major Histocompatibility Complex Class I.

ACS Nano

December 2024

The Fifth Affiliated Hospital, Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, the School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China.

Tumor-specific cytotoxic T cell immunity is critically dependent on effective antigen presentation and sustained signal transduction. However, this immune response is frequently compromised by the inherently low immunogenicity of breast cancer and the deficiency in major histocompatibility complex class I (MHC-I) expression. Herein, a chimeric peptide-engineered stoichiometric polyprodrug (PDPP) is fabricated to potentiate the cytotoxic T cell response, characterized by a high drug loading capacity and precise stoichiometric drug ratio, of which the immunogenic cell death (ICD) inducer of protoporphyrin IX (PpIX) and the epigenetic drug of decitabine (DAC) are condensed into a polyprodrug called PpIX-DAC.

View Article and Find Full Text PDF

Fibrosis is the main pathological feature of aortic stiffness, which is a common extracardiac comorbidity of heart failure with preserved ejection fraction (HFpEF) and a contributor to left ventricular (LV) diastolic dysfunction. Systemic low-grade inflammation plays a crucial role in the pathogenesis of HFpEF and the development of vascular fibrosis. In this study, we investigate the inflammatory mechanism of aortic fibrosis in HFpEF using a novel mouse model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!