This study focused on the application of novel finite-element analysis software for constructing a finite-element model from the computed tomography data of a human dentulous mandible. The finite-element model is necessary for evaluating the mechanical response of the alveolar part of the mandible, resulting from occlusal force applied to the teeth during biting. Commercially available patient-specific general computed tomography-based finite-element analysis software was solely applied to the finite-element analysis for the extraction of computed tomography data. The mandibular bone with teeth was extracted from the original images. Both the enamel and the dentin were extracted after image processing, and the periodontal ligament was created from the segmented dentin. The constructed finite-element model was reasonably accurate using a total of 234,644 nodes and 1,268,784 tetrahedral and 40,665 shell elements. The elastic moduli of the heterogeneous mandibular bone were determined from the bone density data of the computed tomography images. The results suggested that the software applied in this study is both useful and powerful for creating a more accurate three-dimensional finite-element model of a dentulous mandible from the computed tomography data without the need for any other software.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0954411913508054 | DOI Listing |
Sci Rep
December 2024
Department of Nuclear Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, 81 Irwon-Ro, Gangnam-Gu, Seoul, 06351, Republic of Korea.
Texture analysis generates image parameters from F-18 fluorodeoxyglucose positron emission tomography/computed tomography (FDG PET/CT). Although some parameters correlate with tumor biology and clinical attributes, their types and implications can be complex. To overcome this limitation, pseudotime analysis was applied to texture parameters to estimate changes in individual sample characteristics, and the prognostic significance of the estimated pseudotime of primary tumors was evaluated.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Surgery, Division of Transplant Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
Central body fat distribution affects kidney function. Abdominal fat measurements using computed tomography (CT) may prove superior in assessing body composition-related kidney risk in living kidney donors. This retrospective cohort study including 550 kidney donors aimed to determine the association between CT-measured abdominal fat areas and kidney function before and after donor nephrectomy.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Health Management, Chronic Health Management Laboratory, Henan Provincial People's Hospital, Zhengzhou, 450003, China.
Despite numerous studies investigating the correlation between the serum uric acid and high-density lipoprotein cholesterol ratio (UHR) and fatty liver disease, the evidence for the dose-response relationship between UHR and liver fat content (LFC) remains uncertain. This study employs quantitative computed tomography (CT) to quantify LFC and aims to investigate the correlation and dose-response relationship between UHR levels and LFC in Chinese adults. Based on the health check-up data from 2021 at Henan Provincial People's Hospital, China, the objective of this cross-sectional study was to investigate the association between UHR levels and LFC among individuals of different genders.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Radiology, Veterans Health Service Medical Center, Seoul, Republic of Korea.
This study aimed to compare computed tomography (CT) findings between basaloid lung squamous cell carcinoma (SCC) and non-basaloid SCC. From July 2003 to April 2021, 39 patients with surgically proven basaloid SCC were identified. For comparison, 161 patients with surgically proven non-basaloid SCC from June 2018 to January 2019 were selected consecutively.
View Article and Find Full Text PDFSci Rep
December 2024
Center for Rehabilitation Medicine, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China.
This study aims to develop and validate different radiomics models based on thoracic and upper lumbar spine in chest low-dose computed tomography (LDCT) to predict low bone mineral density (BMD) using quantitative computed tomography (QCT) as standard of reference. A total of 905 participants underwent chest LDCT and paired QCT BMD examination were retrospectively included from August 2018 and June 2019. The patients with low BMD (n = 388) and the normal (n = 517) were randomly divided into a training set (n = 622) and a validation set (n = 283).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!