miRNAs are small non-coding RNAs able to modulate target gene expression. It has been postulated that miRNAs confer robustness to biological processes, but clear experimental evidence is still missing. Here, using a synthetic biological approach, we demonstrate that microRNAs provide phenotypic robustness to transcriptional regulatory networks by buffering fluctuations in protein levels. We construct a network motif in mammalian cells exhibiting a 'toggle-switch' phenotype in which two alternative protein expression levels define its ON and OFF states. The motif consists of an inducible transcription factor that self-regulates its own transcription and that of a miRNA against the transcription factor itself. We confirm, using mathematical modelling and experimental approaches, that the microRNA confers robustness to the toggle-switch by enabling the cell to maintain and transmit its state. When absent, a dramatic increase in protein noise level occurs, causing the cell to randomly switch between the two states.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3836244 | PMC |
http://dx.doi.org/10.1038/ncomms3364 | DOI Listing |
Metabolites
December 2024
Exercise Biological Research Center, China Institute of Sport Science, Beijing 100061, China.
Background: Insulin resistance (IR) is central to the progression of non-alcoholic fatty liver disease (MAFLD). While aerobic exercise reduces hepatic fat and enhances insulin sensitivity, the specific mechanisms-particularly those involving exosomal pathways-are not fully elucidated.
Method: Exosomes were isolated from 15 MAFLD patients' plasma following the final session of a 12-week aerobic exercise intervention.
Plant Physiol Biochem
December 2024
Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, 350002, Fuzhou, China; Key Laboratory of Biological Breeding for Fujian and Taiwan Crops, Ministry of Agriculture and Rural Affairs, Key Laboratory of Crop Biotechnology of Fujian Higher Education Institutes, Fujian Agriculture and Forestry University, Fuzhou, China. Electronic address:
Recent studies have demonstrated that the primary transcript of miRNAs (pri-miRNAs) are able to encode small peptides influencing plant growth and development, as well as responses to various environmental cues. However, their role in plant responses to salt stress is not fully comprehended. Here, we characterized a short peptide encoded by miR172b (miPEP172b) in rice (Oryza sativa L.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, P. R. China.
MicroRNA (miRNA)-based therapy holds significant potential; however, its structural limitations pose a challenge to the full exploitation of its biomedical functionality. Framework nucleic acids are promising owing to their transportability, biocompatibility, and functional editability. MiRNA-125 is embedded into a nucleic acid framework to create an enzyme-responsive nanoparachute (NP), enhancing the miRNA loading capacity while preserving the attributes of small-scale framework nucleic acids and circumventing the uncertainty related to RNA exposure in conventional loading methods.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Guizhou Provincial Key Laboratory for Agricultural Pest Management in Mountainous Region, Institute of Crop Protection, College of Agriculture, Guizhou University, Guiyang 550025, PR China. Electronic address:
Understanding the insecticide resistance mechanisms and their underlying regulatory pathways is essential for pest management. Previous findings indicated that the overexpression of P450 gene, CYP6ER1, was a key mechanism for sulfoxaflor metabolic resistance in Nilaparvata lugens. However, it remains unclear whether quantitative changes in the target nicotinic acetylcholine receptors (nAChRs) contribute to sulfoxaflor resistance and the underlying regulatory mechanisms involved.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Medical Department, The First Affiliated Hospital of Shihezi University, Shihezi 832008, China. Electronic address:
Exosomal microRNA (miRNA)s have been proven to affect recipient cell chemoresistance in several cancers. This research attempted to uncover the role of exosomal miRNA and the regulatory mechanism in cisplatin resistance of esophageal cancer (EC). Cisplatin-resistant EC cells (KYSE-150-CisR and TE-1-CisR) were established by the parental cells (KYSE-150 and TE-1) treated with a gradual increase of cisplatin concentration.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!