There is a growing demand for the efficient treatment of seaweed waste. We identified six bacterial strains from the marine environment for the reutilization of brown-seaweed waste, and the most potentially useful strain, Microbacterium oxydans, was chosen and further investigated. Plate assays indicated that this bacterial isolate possessed both alginate lyase and laminarinase activities. The optimal inoculum size, pH, temperature and substrate concentration for the degradation of brown-seaweed polysaccharides by the isolate were as follows: 20% (v v(-1)), pH 6.0, 37 °C, and 5 g L(-1) for alginate and 20% (v v(-1)), pH 6.0, 30 °C, and 10 g L(-1) for laminarin, respectively. During 6 d in culture under the optimal conditions, the isolate produced 0.17 g L(-1) of reducing sugars from alginate with 11.0 U mL(-1) of maximal alginate lyase activity, and 5.11 and 2.88 g L(-1) of reducing sugars and glucose from laminarin, respectively. In particular, a fair amount of laminarin was degraded to glucose (28.8%) due to the isolate's exolytic laminarinase activity. As a result, the reutilization of brown-seaweed waste by this isolate appears to be possible for the production of reducing sugars as a valuable resource. This is the first study to directly demonstrate the ability of M. oxydans to degrade both alginate and laminarin.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jenvman.2013.08.064DOI Listing

Publication Analysis

Top Keywords

reutilization brown-seaweed
12
brown-seaweed waste
12
reducing sugars
12
microbacterium oxydans
8
alginate lyase
8
20% v v-1
8
alginate
5
oxydans novel
4
novel alginate-
4
alginate- laminarin-degrading
4

Similar Publications

There is a growing demand for the efficient treatment of seaweed waste. We identified six bacterial strains from the marine environment for the reutilization of brown-seaweed waste, and the most potentially useful strain, Microbacterium oxydans, was chosen and further investigated. Plate assays indicated that this bacterial isolate possessed both alginate lyase and laminarinase activities.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!