The effect of NADPH-oxidase inhibitor apocynin on cognitive impairment induced by moderate lateral fluid percussion injury: role of inflammatory and oxidative brain damage.

Neurochem Int

Laboratório de Bioquímica do Exercício, Departamento de Métodos e Técnicas Desportivas, Centro de Educação Física e Desportos, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil; Programa de Pós - Graduação em Ciências Biológicas: Bioquímica Toxicológica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil. Electronic address:

Published: November 2013

Traumatic brain injury (TBI) is a devastating disease that commonly causes persistent mental disturbances and cognitive deficits. Although studies have indicated that overproduction of free radicals, especially superoxide (O2(-)) derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase is a common underlying mechanism of pathophysiology of TBI, little information is available regarding the role of apocynin, an NADPH oxidase inhibitor, in neurological consequences of TBI. Therefore, the present study evaluated the therapeutic potential of apocynin for treatment of inflammatory and oxidative damage, in addition to determining its action on neuromotor and memory impairments caused by moderate fluid percussion injury in mice (mLFPI). Statistical analysis revealed that apocynin (5mg/kg), when injected subcutaneously (s.c.) 30min and 24h after injury, had no effect on neuromotor deficit and brain edema, however it provided protection against mLFPI-induced object recognition memory impairment 7days after neuronal injury. The same treatment protected against mLFPI-induced IL-1β, TNF-α, nitric oxide metabolite content (NOx) 3 and 24h after neuronal injury. Moreover, apocynin treatment reduced oxidative damage (protein carbonyl, lipoperoxidation) and was effective against mLFPI-induced Na(+), K(+)-ATPase activity inhibition. The present results were accompanied by effective reduction in lesion volume when analyzed 7days after neuronal injury. These data suggest that superoxide (O2(-)) derived from NADPH oxidase can contribute significantly to cognitive impairment, and that the post injury treatment with specific NADPH oxidase inhibitors, such as apocynin, may provide a new therapeutic approach to the control of neurological disabilities induced by TBI.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuint.2013.09.012DOI Listing

Publication Analysis

Top Keywords

nadph oxidase
16
neuronal injury
12
cognitive impairment
8
fluid percussion
8
injury
8
percussion injury
8
inflammatory oxidative
8
superoxide o2-
8
o2- derived
8
apocynin treatment
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!