Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 144
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 144
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 212
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1002
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3142
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Identifying susceptibility genes that influence complex diseases is extremely difficult because loci often influence the disease state through genetic interactions. Numerous approaches to detect disease-associated SNP-SNP interactions have been developed, but none consistently generates high-quality results under different disease scenarios. Using summarizing techniques to combine a number of existing methods may provide a solution to this problem. Here we used three popular non-parametric methods-Gini, absolute probability difference (APD), and entropy-to develop two novel summary scores, namely principle component score (PCS) and Z-sum score (ZSS), with which to predict disease-associated genetic interactions. We used a simulation study to compare performance of the non-parametric scores, the summary scores, the scaled-sum score (SSS; used in polymorphism interaction analysis (PIA)), and the multifactor dimensionality reduction (MDR). The non-parametric methods achieved high power, but no non-parametric method outperformed all others under a variety of epistatic scenarios. PCS and ZSS, however, outperformed MDR. PCS, ZSS and SSS displayed controlled type-I-errors (<0.05) compared to GS, APDS, ES (>0.05). A real data study using the genetic-analysis-workshop 16 (GAW 16) rheumatoid arthritis dataset identified a number of interesting SNP-SNP interactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.gene.2013.09.041 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!