E2F1 is implicated in transcriptional activation of polo-like kinase-1 (PLK1), but yet the mechanism is not fully understood. PLK1 suppression plays an important checkpoint role in response to DNA damage. Suppression of the PLK1 gene by binding of p53 to upstream p53RE2 element in the promoter has been recently revealed. Here we report another mechanism, in which p53 interacts with E2F1 to form p53-E2F1-DNA complex repressing E2F1-dependent PLK1 expression. PLK1 was downregulated in cisplatin exposed HCT116p53(+/+) but not HCT116p53(-/-) cells, indicating p53-suppressed PLK1 upon DNA damage. Co-transfection and reporter enzyme assays revealed that p53 suppressed but E2F1 promoted PLK1 gene activation. 5'-Deletion and substitution mutations showed multiple positive cis-elements residing in the PLK1 promoter, of which at least two E2F1 sites at positions -75/-68 and -40/-32 were required for the full activity of the promoter. Combination of 5'-deletion and substitution mutations with over-expression of p53 showed that suppression of the PLK1 gene by p53 was E2F1-dependent: mutation of the E2F1 site at position -75/-68 partially abrogated suppression activity of p53; mutation of E2F1 site at position -40/-32 released from p53 suppression of PLK1 gene completely. Co-immunoprecipitation and electrophoretic mobility shift assay showed that DNA damage promoted p53-E2F1 interaction, thereby creating a p53-E2F1 complex assembly on the PLK1 promoter in vitro. The in vivo formation of p53-E2F1-PLK1 promoter complex upon DNA damage was further evidenced by chromatin immunoprecipitation (ChIP) and re-ChIP. In addition, we showed that suppression of PLK1 by p53 promoted apoptosis. Our data suggest that p53 may interact with E2F1 to form p53-E2F1-DNA complex suppressing E2F1-dependent PLK1 expression. The model of p53 action on E2F1-activated PLK1 gene may explain at least partly how p53 as a suppressor regulates the downstream effects of E2F1 in cellular stresses including DNA damage stress.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexcr.2013.09.012 | DOI Listing |
EMBO Rep
January 2025
Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, M5G 1×5, Ontario, Canada.
Nat Biotechnol
January 2025
Institute for Intelligent Biotechnologies (iBIO), Helmholtz Center Munich, Neuherberg, Germany.
Efficient and accurate nanocarrier development for targeted drug delivery is hindered by a lack of methods to analyze its cell-level biodistribution across whole organisms. Here we present Single Cell Precision Nanocarrier Identification (SCP-Nano), an integrated experimental and deep learning pipeline to comprehensively quantify the targeting of nanocarriers throughout the whole mouse body at single-cell resolution. SCP-Nano reveals the tissue distribution patterns of lipid nanoparticles (LNPs) after different injection routes at doses as low as 0.
View Article and Find Full Text PDFCommun Biol
January 2025
Laboratory of Intensive Care, Laboratory for Prevention and Translation of Geriatric Diseases, The Affiliated Hospital of Yangzhou University, Yangzhou, China.
Cellular senescence (CS) is recognized as a critical driver of aging and age-related disorders. Recent studies have emphasized the roles of ion channels as key mediators of CS. Nonetheless, the roles and regulatory mechanisms of chloride intracellular channels (CLICs) during CS remain largely unexplored.
View Article and Find Full Text PDFNPJ Precis Oncol
January 2025
College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC.
Anaplastic thyroid carcinoma (ATC) is an aggressive cancer that requirements rapid diagnosis and multimodal treatment. Next-generation sequencing (NGS) aids in personalized therapies and improved trial enrollment. The role of liquid-based NGS in ATC remains unclear.
View Article and Find Full Text PDFNat Commun
January 2025
Shanghai Diabetes Institute, Department of Endocrinology and Metabolism, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Middle-aged obesity, characterized by excessive fat accumulation and systemic energy imbalance, often precedes various health complications. Recent research has unveiled a surprising link between DNA damage response and energy metabolism. Here, we explore the role of Eepd1, a DNA repair enzyme, in regulating adipose tissue function and obesity onset.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!