A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mast cells protect from post-traumatic spinal cord damage in mice by degrading inflammation-associated cytokines via mouse mast cell protease 4. | LitMetric

AI Article Synopsis

  • * In a study, MC-deficient mice experienced more severe spinal cord injury effects, including higher astrogliosis and T cell levels, along with lower recovery rates compared to normal mice.
  • * The research indicates that the mast cell protease mMCP4 plays a protective role by breaking down pro-inflammatory cytokines, suggesting that MCs help mitigate CNS damage post-injury.

Article Abstract

Mast cells (MCs) are found abundantly in the central nervous system and play a complex role in neuroinflammatory diseases such as multiple sclerosis and stroke. In the present study, we show that MC-deficient Kit(W-sh/W-sh) mice display significantly increased astrogliosis and T cell infiltration as well as significantly reduced functional recovery after spinal cord injury compared to wildtype mice. In addition, MC-deficient mice show significantly increased levels of MCP-1, TNF-α, IL-10 and IL-13 protein levels in the spinal cord. Mice deficient in mouse mast cell protease 4 (mMCP4), an MC-specific chymase, also showed increased MCP-1, IL-6 and IL-13 protein levels in spinal cord samples and a decreased functional outcome after spinal cord injury. A degradation assay using supernatant from MCs derived from either mMCP4(-/-) mice or controls revealed that mMCP4 cleaves MCP-1, IL-6, and IL-13 suggesting a protective role for MC proteases in neuroinflammation. These data show for the first time that MCs may be protective after spinal cord injury and that they may reduce CNS damage by degrading inflammation-associated cytokines via the MC-specific chymase mMCP4.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.nbd.2013.09.012DOI Listing

Publication Analysis

Top Keywords

spinal cord
24
cord injury
12
mast cells
8
degrading inflammation-associated
8
inflammation-associated cytokines
8
mouse mast
8
mast cell
8
cell protease
8
il-13 protein
8
protein levels
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!