Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Molecules acting in the central nervous system play a critical role in the control of both energy and glucose homeostasis. The hypothalamus consists of a highly diverse collection of interconnected neurons and supporting glial cells that allow this region of the brain to sense and respond to a diverse range of hormonal and metabolic signals. We review recent advances in our understanding of the anatomical architecture and molecular mechanisms within the hypothalamus and how these facilitate the orchestration of systemic metabolic processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.coph.2013.09.010 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!