Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Diabetes mellitus (DM) is a metabolic disorder that is widely rampant throughout the world population these days. The uncontrolled DM may lead to complications of eye, heart, kidney and nerves. The most common type of diabetes is the type 2 diabetes or insulin-resistant DM. Near-infrared spectroscopy (NIRS) technology is widely used in non-invasive monitoring of physiological signals. Three types of NIRS signals are used in this work: (i) variation in the oxygenated haemoglobin (O2Hb) concentration, (ii) deoxygenated haemoglobin (HHb), and (iii) ratio of oxygenated over the sum of the oxygenated and deoxygenated haemoglobin which is defined as: tissue oxygenation index (TOI) to analyze the effect of exercise on diabetes subjects. The NIRS signal has the characteristics of non-linearity and non-stationarity. Hence, the very small changes in this time series can be efficiently extracted using higher order statistics (HOS) method. Hence, in this work, we have used sample and HOS entropies to analyze these NIRS signals. These computer aided techniques will assist the clinicians to diagnose and monitor the health accurately and easily without any inter or intra observer variability. Results showed that after a one-year of physical exercise programme, all diabetic subjects increased the sample entropy of the NIRS signals, thus revealing a better muscle performance and an improved recruitment by the central nervous system. Moreover, after one year of physical therapy, diabetic subjects showed a NIRS muscular metabolic pattern that was not distinguished from that of controls. We believe that sample and bispectral entropy analysis is need when the aim is to compare the inner structure of the NIRS signals during muscle contraction, particularly when dealing with neuromuscular impairments.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cmpb.2013.08.018 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!