Transcription activation of some yeast genes correlates with their repositioning to the nuclear pore complex (NPC). The NPC-bound Mlp1 and Mlp2 proteins have been shown to associate with the GAL1 gene promoter and to maintain Ulp1, a key SUMO protease, at the NPC. Here, we show that the release of Ulp1 from the NPC increases the kinetics of GAL1 derepression, whereas artificial NPC anchoring of Ulp1 in the Δmlp1/2 strain restores normal GAL1 regulation. Moreover, artificial tethering of the Ulp1 catalytic domain to the GAL1 locus enhances the derepression kinetics. Our results also indicate that Ulp1 modulates the sumoylation state of Tup1 and Ssn6, two regulators of glucose-repressed genes, and that a loss of Ssn6 sumoylation correlates with an increase in GAL1 derepression kinetics. Altogether, our data highlight a role for the NPC-associated SUMO protease Ulp1 in regulating the sumoylation of gene-bound transcription regulators, positively affecting transcription kinetics in the context of the NPC.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.molcel.2013.08.047 | DOI Listing |
Front Biosci (Landmark Ed)
January 2025
Department of Cardiothoracic Surgery, The Affiliated Jiangyin Hospital of Nantong University, 214400 Jiangyin, Jiangsu, China.
Background: This study investigates the role of small ubiquitin-like modifier (SUMO)-specific peptidase 5 (SENP5), a key regulator of SUMOylation, in esophageal squamous cell carcinoma (ESCC), a lethal disease, and its underlying molecular mechanisms.
Methods: Differentially expressed genes between ESCC mouse oesophageal cancer tissues and normal tissues were analysed via RNA-seq; among them, SENP5 expression was upregulated, and this gene was selected for further analysis. Immunohistochemistry and western blotting were then used to validate the increased protein level of SENP5 in both mouse and human ESCC samples.
J Integr Plant Biol
January 2025
Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, School of Life Sciences, South China Normal University, Guangzhou, 510631, China.
A synthetic biology approach using a robust reconstitution system in Escherichia coli enables the identification of plant ubiquitin-like proteases responsible for removing the small ubiquitin-like modifier (SUMO) post-translational modifications from specific protein substrates.
View Article and Find Full Text PDFCell Biol Toxicol
January 2025
Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ-exposed astrocytes.
View Article and Find Full Text PDFBiochim Biophys Acta Rev Cancer
February 2025
Kunming University of Science and Technology, Medical School, Kunming 650500, China. Electronic address:
SUMOylation is a protein modification process that involves the covalent attachment of a small ubiquitin-like modifier (SUMO) to a specific lysine residue on the target protein. This modification can influence the function, localization, stability, and interactions of proteins, thereby regulating various cellular processes. Altering the SUMOylation of certain proteins is expected to be a potential approach for treating specific cancers and diseases.
View Article and Find Full Text PDFClin Genet
January 2025
Prenatal Diagnosis and Fetal Medicine Department, Human Genetics and Genome Research Institute, National Research Centre (NRC), Cairo, Egypt.
SUMOylation involves covalent attachment of small ubiquitin-like modifier (SUMO) proteins to specific lysine residues on target proteins and regulates various aspects of their function. Sentrin-specific proteases (SENPs) are key players in both the conjugation reaction of SUMO proteins to their targets and the subsequent deconjugation of SUMO-conjugated substrates. Here, we provide the first comprehensive prenatal description of a lethal syndrome linked to a novel homozygous stop-gain variant in SENP7 c.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!