Insulators drive nuclear organization by blocking or facilitating interactions between DNA regulatory elements. Ong et al. show that poly(ADP-ribosyl)ation of insulator binding proteins modulates their ability to physically interact with distant regulatory elements, implicating posttranslational modifications of nonhistone proteins in genome architecture.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cell.2013.09.012 | DOI Listing |
Biol Direct
January 2025
Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an, Shaanxi, 710061, China.
Pancreatic cancer is a lethal disease with an insidious onset, and little is known about its early molecular events. Here, we found that the sterol regulatory element-binding protein 1 (SREBP1) expression is gradually upregulated during the initiation of pancreatic cancer. Through in vitro 3D culture of pancreatic acinar cells and experiments in LSL-Kras;Pdx1-Cre (KC) mice, we found that pharmacological inhibition of SREBP1 suppressed pancreatic tumorigenesis.
View Article and Find Full Text PDFNat Commun
January 2025
Jiangsu Provincial Key Laboratory of Geriatrics, Department of Geriatrics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
Immune functions decline with aging, leading to increased susceptibility to various diseases including tumors. Exploring aging-related molecular targets in elderly patients with cancer is thus highly sought after. Here we find that an ER transmembrane enzyme, sterol O-acyltransferase 2 (SOAT2), is overexpressed in regulatory T (Treg) cells from elderly patients with lung squamous cell carcinoma (LSCC), while radiomics analysis of LSCC patients associates increased SOAT2 expression with reduced immune infiltration and poor prognosis.
View Article and Find Full Text PDFZhongguo Zhong Yao Za Zhi
December 2024
Jiangxi Province Key Laboratory of Traditional Chinese Medicine Etiopathogenisis & Research Center for Differentiation and Development of Traditional Chinese Medicine Basic Theory, Jiangxi University of Chinese Medicine Nanchang 330004,China.
This study aims to investigate the mechanism of berberine in regulating the metabolism network via clock-controlled genes represented by brain and muscle arnt-like 1(BMAL1) to ameliorate insulin resistance(IR) of hepatocytes in vitro. The HepG2 cell model of dexamethasone-induced IR(IR-HepG2) was established and treated with 5, 10, and 20 μmol·L~(-1) berberine, respectively, for 24 h. The glucose oxidase method and cell counting kit-8(CCK-8) assay were employed to measure extracellular glucose concentration and cell viability, respectively.
View Article and Find Full Text PDFJ Ethnopharmacol
January 2025
Chongqing Key Laboratory of Traditional Chinese Medicine for Prevention and Cure of Metabolic Diseases, Chongqing Medical University, Chongqing, 400016, PR China. Electronic address:
Ethnopharmacological Relevance: Stephania rotunda Lour., a medicinal herb, has been utilized in both Traditional Chinese Medicine (TCM) and Traditional Indian Medicine to treat conditions such as fever, dysentery, and inflammation. Cepharanthine (CEP), a primary active ingredient of Stephania rotunda Lour.
View Article and Find Full Text PDFJ Nutr Biochem
January 2025
Center for Endemic Disease Control, Chinese Center for Disease Control and Prevention, Harbin Medical University, China; Key Lab of Etiology and Epidemiology, Education Bureau of Heilongjiang Province & Ministry of Health (23618504), Harbin, 150081, China; Heilongjiang Provincial Key Laboratory of Trace Elements and Human Health, Harbin, 150081, China.. Electronic address:
The adverse effect of excessive iodine intake has attracted extensive attention. However, the role of excessive iodine on hypothyroidism and detailed mechanism are not exactly known. Studies have shown that miRNAs are crucial to the occurrence and development of hypothyroidism.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!