An unbiased in vivo screen reveals multiple transcription factors that control HPV E6-regulated hTERT in keratinocytes.

Virology

Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA; Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA 98195, USA.

Published: November 2013

Activation of telomerase by human papillomavirus 16 (HPV16) E6 is a critical step for cell immortalization and transformation in human foreskin keratinocytes (HFKs). Multiple transcription factors have been identified as being involved in E6-induced hTERT expression. Here, we adapted an unbiased in vivo screen using a LacO-LacI system in human cells to discover hTERT promoter-interacting regulators. This approach allowed us to identify a novel hTERT repressor, Maz, which bound the hTERT promoter. E6 expression reduced Maz binding and correspondingly increased Sp1 binding at the hTERT promoter. Knockdown of Maz further increased histone acetylation, as well as hTERT expression in the presence of E6. Overall, these data indicate the utility of a novel screen for promoter-interacting and transcription-regulating proteins. These data also highlight multiple factors that normally regulate hTERT repression in HFKs, and therefore are targeted by E6 for hTERT expression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3787310PMC
http://dx.doi.org/10.1016/j.virol.2013.07.014DOI Listing

Publication Analysis

Top Keywords

htert expression
12
htert
9
unbiased vivo
8
vivo screen
8
multiple transcription
8
transcription factors
8
htert promoter
8
screen reveals
4
reveals multiple
4
factors control
4

Similar Publications

Introduction: POT1 tumor predisposition (POT1-TPD) is an autosomal dominant disorder characterized by increased lifetime malignancy risk. Melanoma, angiosarcoma, and chronic lymphocytic leukemia are the most frequently reported malignancies [1]. Protection of telomeres protein 1 (POT1) is part of the shelterin protein complex to maintain/protect telomeres [2].

View Article and Find Full Text PDF

Characterizing SV40-hTERT Immortalized Human Lung Microvascular Endothelial Cells as Model System for Mechanical Stretch-Induced Lung Injury.

Int J Mol Sci

January 2025

Clinical Division of General Anaesthesia and Intensive Care Medicine, Department of Anesthesia, Genera Intensive Care and Pain Therapy, Medical University Vienna, 1090 Vienna, Austria.

Drug development for human disease relies on preclinical model systems such as human cell cultures and animal experiments before therapeutic treatments can ultimately be tested on humans in clinical studies. We here describe the generation of a novel human cell line (HLMVEC/SVTERT289) that we generated by transfection of microvascular endothelial cells from healthy donor lung tissue with the catalytic domain of telomerase and the SV40 large T/small t-antigen. These cells exhibited satisfactory growth characteristics and largely maintained their native characteristics, including morphology, cell surface marker expression, angiogenic potential and the protein composition of secreted extracellular vesicles.

View Article and Find Full Text PDF

This study investigates the interrelationship between human telomerase reverse transcriptase (hTERT) and ferroptosis in precursor-B (pre-B) acute lymphoblastic leukemia (ALL), specifically examining how hTERT modulation affects ferroptotic cell death pathways. Given that hTERT overexpression characterizes various cancer phenotypes and elevated telomerase activity is observed in early-stage and relapsed ALL, we investigated the molecular mechanisms linking hTERT regulation and ferroptosis in leukemia cells. The experimental design employed Nalm-6 and REH cell lines under three distinct conditions: curcumin treatment, hTERT siRNA knockdown, and their combination.

View Article and Find Full Text PDF

Biogenesis of human telomerase requires its RNA subunit (hTR) to fold into a multi-domain architecture that includes the template-pseudoknot (t/PK) and the three-way junction (CR4/5). These hTR domains bind the telomerase reverse transcriptase (hTERT) protein and are essential for telomerase activity. Here, we probe hTR structure in living cells using dimethyl sulfate mutational profiling with sequencing (DMS-MaPseq) and ensemble deconvolution analysis.

View Article and Find Full Text PDF

Proper histone gene expression is critical to cell viability and maintaining genomic integrity. Multiple histone genes organized into three genomic loci encode for replication coupled core and linker histones. Histone gene expression and transcript processing is orchestrated in the histone locus body (HLB) within the nucleus.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!