Background: The ubiquitous, non-proteinaceous amino acid GABA (γ-aminobutyrate) accumulates in plants subjected to abiotic stresses such as chilling, O2 deficiency and elevated CO2. Recent evidence indicates that controlled atmosphere storage causes the accumulation of GABA in apple (Malus x domestica Borkh.) fruit, and now there is increasing interest in the biochemical mechanisms responsible for this phenomenon. Here, we investigated whether this phenomenon could be mediated via Ca(2+)/calmodulin (CaM) activation of glutamate decarboxylase (GAD) activity.
Results: GAD activity in cell-free extracts of apple fruit was stimulated by Ca(2+)/CaM at physiological pH, but not at the acidic pH optimum. Based on bioinformatics analysis of the apple genome, three apple GAD genes were identified and their expression determined in various apple organs, including fruit. Like recombinant Arabidopsis GAD1, the activity and spectral properties of recombinant MdGAD1 and MdGAD2 were regulated by Ca(2+)/CaM at physiological pH and both enzymes possessed a highly conserved CaM-binding domain that was autoinhibitory. In contrast, the activity and spectral properties of recombinant MdGAD3 were not affected by Ca(2+)/CaM and they were much less sensitive to pH than MdGAD1, MdGAD2 and Arabidopsis GAD1; furthermore, the C-terminal region neither bound CaM nor functioned as an autoinhibitory domain.
Conclusions: Plant GADs typically differ from microbial and animal GAD enzymes in possessing a C-terminal 30-50 amino acid residue CaM-binding domain. To date, rice GAD2 is the only exception to this generalization; notably, the C-terminal region of this enzyme still functions as an autoinhibitory domain. In the present study, apple fruit were found to contain two CaM-dependent GADs, as well as a novel CaM-independent GAD that does not possess a C-terminal autoinhibitory domain.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3849887 | PMC |
http://dx.doi.org/10.1186/1471-2229-13-144 | DOI Listing |
Food Chem
December 2024
Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Yunnan Key Laboratory of Plateau Food Advanced Manufacturing, Kunming 650500, China; Yunnan Engineering Research Center for Fruit & Vegetable Products, Kunming 650500, China. Electronic address:
Natural apple essence (AE) has been widely used as a flavor enhancer due to its distinct aroma and taste, but its high volatility restricts its broader applications in food products. This study addresses the need for an effective microencapsulation technique to overcome the volatility of AE. The objective was to optimize and characterize the AE microencapsulation using β-cyclodextrin (β-CD), gum arabic (GA), and montmorillonite (MMT) as wall materials.
View Article and Find Full Text PDFFood Chem
December 2024
Institute of Agrophysics, Polish Academy of Sciences, Doświadczalna 4, 20-290 Lublin, Poland. Electronic address:
The firmness of the two apple varieties: Idared and Pinova was similar during ripening, while it decreased significantly during 3-month storage only for Idared. Pectin-rich fractions were isolated from apple flesh tissue: water-soluble pectin (WSP), imidazole-soluble pectin (ISP), and hemicellulose-rich fractions: natively acetylated hemicelluloses (LiCl-DMSO), deacetylated hemicelluloses (KOH). It was shown that the degree of acetylation (DAc) of the hemicelluloses fraction (LiCl-DMSO) increased during apple ripening and storage, with higher values for Idared.
View Article and Find Full Text PDFChem Biodivers
January 2025
Liverpool John Moores University, Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Byrom Street, Liverpool, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
Diospyros discolor Willd., commonly known as Velvet apple or Mabolo, is an underutilized fruit. Traditionally, various parts of D.
View Article and Find Full Text PDFFront Microbiol
December 2024
Department of Food Science and Technology, University of Georgia, Athens, GA, United States.
Introduction: Recycling drenchers used to apply postharvest fungicides in pome fruit may spread microorganisms, i.e., plant and foodborne pathogens, that increase fruit loss and impact food safety.
View Article and Find Full Text PDFFront Plant Sci
December 2024
College of Water Resources Science and Engineering, Taiyuan University of Technology, Taiyuan, China.
Introduction: Accurate diagnosis of the water status of fruit trees is a prerequisite for precise irrigation. Measurement of leaf turgor pressure provides a means to explore the water utilization mechanisms of fruit trees and their responses to water stress. However, there are few studies on the use of daily minimum leaf turgor pressure (Ppmax) to indicate water information in apple tree.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!