Context: Pterospermum acerifolium (L.) Willd (Sterculiaceae) has been traditionally used in the treatment of diabetes mellitus but no scientific data has been published supporting the claimed ethnomedical use.

Objective: The present study was designed to estimate the in silico, in vitro α-amylase inhibition potential and anti-diabetic activity of Pterospermum acerifolium bark.

Materials And Methods: In silico studies were performed between human pancreatic α-amylase (HPA) and β-sitosterol by using autodock 4.2 software. In vitro α-amylase inhibition study was carried out with 50% ethanol extract of the bark (PABEE) and its various fractions. The active ethyl acetate fraction (PABEF) was sub-fractionated into three fractions (PABE1, PABE2 and PABE3). Two doses (15 and 30 mg/kg) based on acute toxicity studies, of the above fractions were subjected to antidiabetic screening in vivo by STZ-nicotinamide induced type II diabetic rats.

Results: In silico studies showed the potent inhibition of β-sitosterol on human pancreatic amylase (HPA) with an estimated inhibition constant (Ki) of 269.35 nmol and two hydrogen bond interactions. PABEF showed marked α-amylase inhibition (69.94%) compared to other fractions. Diabetic rats treated with PABE3 (30 mg/kg) reduced the levels of fasting blood glucose, HbA1c, ALT, AST, ALP, triglycerides, total cholesterol, TBARS significantly (p < 0.01) and increased the levels of HDL-C, catalase, GSH, SOD significantly (p < 0.01) as compared to that of diabetic control animals. Histological studies on PABE3 treated group showed remarkable positive changes in β-cells.

Conclusion: The present study confirmed the antihyperglycemic activity along with its status on hepatic biomarkers, antihyperlipidemic and antioxidant properties of Pterospermum acerifolium bark.

Download full-text PDF

Source
http://dx.doi.org/10.3109/13880209.2013.823551DOI Listing

Publication Analysis

Top Keywords

α-amylase inhibition
16
vitro α-amylase
12
pterospermum acerifolium
12
silico vitro
8
inhibition potential
8
activity pterospermum
8
silico studies
8
human pancreatic
8
inhibition
6
α-amylase
5

Similar Publications

Glycobiology of psoriasis: A review.

J Autoimmun

January 2025

Department of Immunology, School of Basic Medical Sciences, NHC Key Laboratory of Medical Immunology, Peking University, No.38, Xueyuan Road, Haidian, Beijing, 100191, China. Electronic address:

Psoriasis is a chronic inflammatory skin disease with etiologies related to genetics, immunity, and the environment. It is characterized by excessive proliferation of keratinocytes and infiltration of inflammatory immune cells. Glycosylation is a post-translational modification of proteins that plays important roles in cell adhesion, signal transduction, and immune cell activation.

View Article and Find Full Text PDF

Robust genetic characterization of paediatric AML has demonstrated that fusion oncogenes are highly prevalent drivers of AML leukemogenesis in young children. Identification of fusion oncogenes associated with adverse outcomes has facilitated risk stratification of patients, although successful development of precision medicine approaches for most fusion-driven AML subtypes have been historically challenging. This knowledge gap has been in part due to difficulties in targeting structural alterations involving transcription factors and in identification of a therapeutic window for selective inhibition of the oncofusion without deleterious effects upon essential wild-type proteins.

View Article and Find Full Text PDF

Fatty Acid Esterification of Octacosanol Attenuates Triglyceride and Cholesterol Synthesis in Mice.

J Agric Food Chem

January 2025

Department of Agro-Industry, Faculty of Agriculture, Natural Resources and Environment, Naresuan University, 99 Moo 9, Tha Pho, Phitsanulok 65000, Thailand.

This study aimed to evaluate the cholesterol-regulatory effects of lauric-acid-esterified octacosanol (LEO) and oleic-acid-esterified octacosanol (OEO) compared to their unmodified counterparts and to investigate the underlying mechanisms by partially substituting the fat content in obese C57BL/6J mice induced with a high-fat diet (HFD). Rice bran oil and coconut oil were also investigated as they are rich in oleic acid and lauric acid, respectively. The results showed that all supplemented groups significantly inhibited weight gain induced by the HFD, but the groups treated with esterified octacosanol exhibited a more pronounced effect.

View Article and Find Full Text PDF

Design and Synthesis of Topoisomerases-Histone Deacetylase Dual Targeted Quinoline-Bridged Hydroxamates as Anticancer Agents.

J Med Chem

January 2025

Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.

The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.

View Article and Find Full Text PDF

Bioinspired Adhesive Hydrogel Platform with Photothermal Antimicrobial, Antioxidant, and Angiogenic Properties for Whole-Process Management of Diabetic Wounds.

ACS Appl Mater Interfaces

January 2025

Oral & Maxillofacial Reconstruction and Regeneration of Luzhou Key Laboratory, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou 646000, China.

Diabetic wound healing remains a major challenge in modern medicine. The persistent inflammation and immune dysfunction hinder angiogenesis by producing excessive ROS and increasing the susceptibility to bacterial infection. In this study, we developed an integrated strategy for whole-process management of diabetic wounds based on a bioinspired adhesive hydrogel platform with hemostasis, photothermal antimicrobial, antioxidant, anti-inflammatory, and angiogenic properties.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!