Selective formation and reactivity of hydrogen (H(•)) and hydroxyl (HO(•)) radicals with perfluorinated sulfonated ionomer membrane, Nafion 211, is described. Selective formation of radicals was achieved by electron beam irradiation of aqueous solutions of H2O2 or H2SO4 to form HO(•) and H(•), respectively, and confirmed by ESR spectroscopy using a spin trap. The structure of Nafion 211 after reaction with H(•) or HO(•) was determined using calibrated (19)F magic angle spinning NMR spectroscopy. Soluble residues of degradation were analyzed by liquid and solid-state NMR. NMR and ATR-FTIR spectroscopy, together with determination of ion exchange capacity, water uptake, proton conductivity, and fluoride ion release, strongly indicate that attack by H(•) occurs at the tertiary carbon C-F bond on both the main and side chain; whereas attack by HO(•) occurs solely on the side chain, specifically, the α-O-C bond.

Download full-text PDF

Source
http://dx.doi.org/10.1021/ja408032pDOI Listing

Publication Analysis

Top Keywords

selective formation
12
electron beam
8
beam irradiation
8
nafion 211
8
side chain
8
formation hydrogen
4
hydrogen hydroxyl
4
hydroxyl radicals
4
radicals electron
4
irradiation reactivity
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!