Coupled large amplitude motions: a case study of the dimethylbenzaldehyde isomers.

J Phys Chem A

Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR 7583 CNRS/IPSL, Universités Paris-Est et Paris Diderot, 61 avenue du Général de Gaulle, 94010 Créteil Cedex, France.

Published: December 2013

The microwave spectra of the 3,4- (syn and anti), 2,5- (syn), and 3,5-dimethylbenzaldehyde (DMBA) molecules have been recorded for the first time in the 2-26.5 GHz frequency range, using the high resolution COBRA-FTMW spectrometer in Hannover. The experimental assignments and fits are supplemented by ab initio quantum chemical calculations of the conformational energy landscape and dipole moment components. The analysis of the spectra of the four observed isomers, including spectroscopic constants and large amplitude motion parameters, are presented in this paper. The DMBA isomers belong to a series of similar molecules obtained formally by adding one or more methyl group(s) at the aromatic ring. These molecules serve as prototype systems for the development of the theoretical model of asymmetric top molecules having C(s) symmetry while containing in addition two nonequivalent methyl tops (C(3v)), exhibiting different barrier heights and coupling terms. Thus, the DMBA isomers represent good species for testing the recently written two-top internal rotors BELGI program.

Download full-text PDF

Source
http://dx.doi.org/10.1021/jp407603yDOI Listing

Publication Analysis

Top Keywords

large amplitude
8
dmba isomers
8
coupled large
4
amplitude motions
4
motions case
4
case study
4
study dimethylbenzaldehyde
4
isomers
4
dimethylbenzaldehyde isomers
4
isomers microwave
4

Similar Publications

Background: In neuroscience, Ca imaging is a prevalent technique used to infer neuronal electrical activity, often relying on optical signals recorded at low sampling rates (3 to 30 Hz) across multiple neurons simultaneously. This study investigated whether increasing the sampling rate preserves critical information that may be missed at slower acquisition speeds.

Methods: Primary neuronal cultures were prepared from the cortex of newborn pups.

View Article and Find Full Text PDF

Goal: Current methodologies for assessing cerebral compliance using pressure sensor technologies are prone to errors and issues with inter- and intra-observer consistency. RAP, a metric for measuring intracranial compensatory reserve (and therefore compliance), holds promise. It is derived using the moving correlation between intracranial pressure (ICP) and the pulse amplitude of ICP (AMP).

View Article and Find Full Text PDF

Piezoresistive Cantilever Microprobe with Integrated Actuator for Contact Resonance Imaging.

Sensors (Basel)

January 2025

Institute of Semiconductor Technology (IHT), Technische Universität Braunschweig, Hans-Sommer-Straße 66, 38106 Braunschweig, Germany.

A novel piezoresistive cantilever microprobe (PCM) with an integrated electrothermal or piezoelectric actuator has been designed to replace current commercial PCMs, which require external actuators to perform contact-resonance imaging (CRI) of workpieces and avoid unwanted "forest of peaks" observed at large travel speed in the millimeter-per-second range. Initially, a PCM with integrated resistors for electrothermal actuation (ETA) was designed, built, and tested. Here, the ETA can be performed with a piezoresistive Wheatstone bridge, which converts mechanical strain into electrical signals by boron diffusion in order to simplify the production process.

View Article and Find Full Text PDF

The application of regenerative therapy through stem cell transplantation has emerged as a promising avenue for the treatment of diabetes mellitus (DM). Transplanted tissue homeostasis is affected by disturbances in the clock genes of stem cells. The aim of this study is to investigate the diurnal variation in mitochondrial genes and function after transplantation of adipose-derived mesenchymal stem cells (T2DM-ADSCs) from type 2 diabetic patients into immunodeficient mice.

View Article and Find Full Text PDF

The electrochemical cutting technique, utilizing electrolyte flushing through micro-hole arrays in the radial direction of a tube electrode, offers the potential for cost-effective and high-surface-integrity machining of large-thickness, straight-surface structures of difficult-to-cut materials. However, fabricating the array of jet micro-holes on the tube electrode sidewall remains a significant challenge, limiting the broader application of this technology. To enhance the efficiency and quality of machining these jet micro-holes on the tube sidewall, a helical electrode electrochemical drilling method assisted by anode vibration has been proposed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!