The ADP/ATP carrier protein (AAC) expressed in Artemia franciscana is refractory to bongkrekate. We generated two strains of Saccharomyces cerevisiae where AAC1 and AAC3 were inactivated and the AAC2 isoform was replaced with Artemia AAC containing a hemagglutinin tag (ArAAC-HA). In one of the strains the suppressor of ΔAAC2 lethality, SAL1, was also inactivated but a plasmid coding for yeast AAC2 was included, because the ArAACΔsal1Δ strain was lethal. In both strains ArAAC-HA was expressed and correctly localized to the mitochondria. Peptide sequencing of ArAAC expressed in Artemia and that expressed in the modified yeasts revealed identical amino acid sequences. The isolated mitochondria from both modified strains developed 85% of the membrane potential attained by mitochondria of control strains, and addition of ADP yielded bongkrekate-sensitive depolarizations implying acquired sensitivity of ArAAC-mediated adenine nucleotide exchange to this poison, independent from SAL1. However, growth of ArAAC-expressing yeasts in glycerol-containing media was arrested by bongkrekate only in the presence of SAL1. We conclude that the mitochondrial environment of yeasts relying on respiratory growth conferred sensitivity of ArAAC to bongkrekate in a SAL1-dependent manner.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3779231PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0074187PLOS

Publication Analysis

Top Keywords

expressed artemia
12
lethality sal1
8
adp/atp carrier
8
expressed
5
strains
5
suppressor aac2
4
aac2 lethality
4
sal1
4
sal1 modulates
4
modulates sensitivity
4

Similar Publications

Background: Carotenoids play essential nutritional and physiological roles in aquatic animals. Since aquatic species cannot synthesize carotenoids de novo, they must obtain these compounds from their diet to meet the physiological and adaptive requirements needed in specific aquaculture stages and conditions. Carotenoid supplementation in represents a promising strategy to enhance pigmentation, health, and growth in aquaculture species, particularly in larvae and other early developmental stages.

View Article and Find Full Text PDF

Introduction: The present study was conducted to investigate the effects of PMIX, a polyphenol-rich extract mixture from chestnut wood and olive, on growth performance, hematological parameters, immunity in serum and skin mucus, hepatic antioxidant enzymes, and intestinal cytokine expression in rainbow trout ().

Methods: Four experimental diets containing 0 g PMIX kg diet (control, C), 0.5 g PMIX kg diet (P0.

View Article and Find Full Text PDF

Ecytonucleospora hepatopenaei (EHP), a microsporidian parasite first named and characterized from the Penaeus monodon (black or giant tiger shrimp), causes growth retardation and poses a significant threat to shrimp farming. We observed shrimp farms associated with disease conditions during our fish disease surveillance and health management program in West Bengal, India. Shrimp exhibited growth retardation and increased size variability, particularly in advanced stages, exhibiting soft shells, lethargy, reduced feeding and empty midguts.

View Article and Find Full Text PDF

Artemin molecular chaperone from improves tolerance of to abiotic stress.

Funct Plant Biol

November 2024

Department of Plant Biotechnology, College of Agricultural Sciences, University of Guilan, Khalij Fars Highway, Rasht 4199613769, Iran.

Article Synopsis
  • Artemia is a microcrustacean known for its embryos' ability to withstand extreme conditions, thanks in part to a protective protein called artemin.
  • Researchers cloned the artemin gene and introduced it into Arabidopsis thaliana to study its impact on heat stress tolerance.
  • Results showed that transgenic plants with the artemin gene had improved germination rates, root growth, and stress-related gene expression, indicating enhanced heat stress resistance compared to wild-type plants.*
View Article and Find Full Text PDF

Nanoparticles, such as copper oxide nanoparticle (CuO NP) and polystyrene nanoplastic (PSNP), are increasingly released into aquatic environments, and pose potential risks to aquatic animals such as brine shrimps. Understanding the toxicity of these nanoparticles, especially when combined, is very important to assess their environmental effects. Therefore, this work describes the toxicity of polystyrene nanoplastic (PSNP) and CuO nanoparticles (CuO NPs) for brine shrimp (Artemiasalina).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!