The hitherto unprecedented palladium-catalyzed cross-coupling of ()-β-bromo-β-arylethenylboranes can be made to proceed satisfactorily through (1) the use of highly catalytically active bis(tri--butylphosphine)palladium or dichloro[,-bis-(2,6-diisopropylphenyl)imidazol-2-yl](-chloropyridine)palladium and (2) conversion of dibromoboryl group to (pinacol)boryl group. Thus, a wide variety of carbon groups can be used to substitute bromine in ≥98% stereo- and regioselectivity, while suppressing the otherwise dominant β-debromoboration. Together with the alkylethyne-based protocols, the alkyne bromoboration-Negishi coupling tandem process has emerged as the most widely applicable and highly selective route to trisubstituted alkenes including those that are otherwise difficult to access.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3781582 | PMC |
http://dx.doi.org/10.1002/adsc.200900766 | DOI Listing |
Org Lett
December 2024
Shanghai Key Laboratory of Green Chemistry and Chemical Processes, State Key Laboratory of Petroleum Molecular & Process Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China.
Multisubstituted piperidines are prevalent units in pharmaceuticals. Herein, a photodriven anti-Markovnikov hydroaminative cyclization of a ()/()-isomeric mixture of trisubstituted alkenes using the lactate-derived -symmetric arylthiol catalyst was developed for the synthesis of -2,3-disubstituted piperidines and azepane in high diastereoselectivity and good yields. The origin of diastereoselectivity and the observed different hydroamination rate of alkene with different configurations were elucidated by the experimental and computational investigation.
View Article and Find Full Text PDFChemistry
December 2024
Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Translational Research Hub, Maindy Road, Cathays, Cardiff, Cymru/Wales, CF24 4HQ, UK.
Precise control of selective alkene functionalization is a continuing challenge in the chemical community. In this study, we develop a substitution-controlled regiodivergent thioetherification of di- or trisubstituted alkenes using 10 mol % tris(pentafluorophenyl)borane [B(CF)] as a catalyst and N-thiosuccinimide as a sulfenylating reagent. This metal-free borane catalyzed C-S bond forming method is utilized for a Csp-H sulfenylation reaction to synthesize an array of diphenylvinylsulfide derivatives with good to excellent yields (25 examples, up to 91 % yield).
View Article and Find Full Text PDFOrg Lett
December 2024
College of Sciences, Hebei University of Science and Technology, Shijiazhuang 050022, China.
A practical and efficient -diboration of propargyl alcohols was accomplished using sodium hydride (NaH) as a base in ,-dimethylformamide at room temperature. The mild reaction conditions demonstrate general applicability, facilitating the successful conversion of both terminal and internal propargyl alcohols with diverse structures and functional groups into highly functionalized alkenediboronates [4-borylated 1,2-oxaborol-2(5)-oles]. The resulting products, which incorporate two boron groups, can be selectively activated and subjected to stepwise transformations, thereby providing an effective platform for synthesizing a wide range of structurally diverse trisubstituted alkenes.
View Article and Find Full Text PDFOrg Lett
December 2024
School of Chemistry & Chemical Engineering, Yangzhou University, Yangzhou 225009, China.
We report herein a visible-light photoredox-catalyzed 1,4-hydrofluoromethylation of terminal-alkene-derived 1,3-enynes with sodium fluoromethylsulfinate, providing an effective protocol to access a diversity of di- and trisubstituted allenes under mild conditions. The synthetic utility of the present protocol was demonstrated by a large-scale reaction as well as the synthetic derivatization of the allene product.
View Article and Find Full Text PDFOrg Lett
November 2024
Division of Applied Chemistry, Okayama University, Tsushimanaka, Okayama 700-8530, Japan.
A novel method for the two-step synthesis of α-boryl-α-substituted allylboronates from propyne is described. These allylboronates are prepared by the Co-catalyzed 1,1-diboration reaction of propyne with Bpin, followed by the base-mediated alkylation reaction of 1,1-di(boryl)propene at the α-position. Computational studies revealed the origins of observed reactivity and selectivity in the base-mediated alkylation reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!