Transforming growth factor-β-activated kinase 1 regulates angiogenesis via AMP-activated protein kinase-α1 and redox balance in endothelial cells.

Arterioscler Thromb Vasc Biol

From the Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, Frankfurt, Germany and DZHK (German Centre for Cardiovascular Research) partner site Rhine-Main (N.Z., R.A.M., T.F., R.P., E.B., I.F., B.F.); and Department of Pharmacology, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (B.S., N.W.).

Published: December 2013

Objective: Transforming growth factor-β-activated kinase 1 (TAK1) is a mitogen-activated protein 3-kinase and an AMP-activated protein kinase (AMPK) kinase in some cell types. Although TAK1(-/-) mice display defects in developmental vasculogenesis, the role of TAK1 in endothelial cells has not been investigated in detail.

Approach And Results: TAK1 downregulation (small interfering RNA) in human endothelial cells attenuated proliferation without inducing apoptosis and diminished endothelial cell migration, as well as tube formation. Cytokine- and vascular endothelial growth factor (VEGF)-induced endothelial cell sprouting in a modified spheroid assay were abrogated by TAK1 downregulation. Moreover, VEGF-induced endothelial sprouting was impaired in aortic rings from mice lacking TAK1 in endothelial cells (TAK(ΔEC)). TAK1 inhibition and downregulation also inhibited VEGF-stimulated phosphorylation of several kinases, including AMPK. Proteomic analyses revealed that superoxide dismutase 2 (SOD2) expression was reduced in TAK1-deficient endothelial cells, resulting in attenuated hydrogen peroxide production but increased mitochondrial superoxide production. Endothelial cell SOD2 expression was also attenuated by AMPK inhibition and in endothelial cells from AMPKα1(-/-) mice but was unaffected by inhibitors of c-Jun N-terminal kinase, p38, extracellular signal-regulated kinase 1/2, or phosphatidylinositol 3-kinase/Akt. Moreover, the impaired endothelial sprouting from TAK(ΔEC) aortic rings was abrogated in the presence of polyethylene glycol-SOD, and tube formation was normalized by the overexpression of SOD2. A similar rescue of angiogenesis was observed in polyethylene glycol-SOD-treated aortic rings from mice with endothelial cell-specific deletion of the AMPKα1.

Conclusions: These results establish TAK1 as an AMPKα1 kinase that regulates vascular endothelial growth factor-induced and cytokine-induced angiogenesis by modulating SOD2 expression and the superoxide anion:hydrogen peroxide balance.

Download full-text PDF

Source
http://dx.doi.org/10.1161/ATVBAHA.113.301848DOI Listing

Publication Analysis

Top Keywords

endothelial cells
24
endothelial
14
endothelial cell
12
aortic rings
12
sod2 expression
12
transforming growth
8
growth factor-β-activated
8
factor-β-activated kinase
8
kinase regulates
8
amp-activated protein
8

Similar Publications

Pulmonary arterial hypertension (PAH) is a syndrome characterized by increased pulmonary vascular resistance and elevated pulmonary artery pressure, ultimately leading to right heart failure and even death. Increasing evidence implicates the fat mass and obesity-associated protein (FTO) in various metabolic and inflammatory pathways; however, its role in pulmonary endothelial function and PAH remains largely unexplored. In this study, we examined the effects of endothelial cell-specific FTO knockout on PAH development.

View Article and Find Full Text PDF

This study presents T-1-NBAB, a new compound derived from the natural xanthine alkaloid theobromine, aimed at inhibiting VEGFR-2, a crucial protein in angiogenesis. T-1-NBAB's potential to interacts with and inhibit the VEGFR-2 was indicated using in silico techniques like molecular docking, MD simulations, MM-GBSA, PLIP, essential dynamics, and bi-dimensional projection experiments. DFT experiments was utilized also to study the structural and electrostatic properties of T-1-NBAB.

View Article and Find Full Text PDF

Chemigenetic Ca2+ indicators report elevated Ca2+ levels in endothelial Weibel-Palade bodies.

PLoS One

January 2025

Institute of Medical Biochemistry, Center for Molecular Biology of Inflammation, University of Muenster, Muenster, Germany.

Weibel-Palade bodies (WPB) are secretory organelles exclusively found in endothelial cells and among other cargo proteins, contain the hemostatic von-Willebrand factor (VWF). Stimulation of endothelial cells results in exocytosis of WPB and release of their cargo into the vascular lumen, where VWF unfurls into long strings of up to 1000 µm and recruits platelets to sites of vascular injury, thereby mediating a crucial step in the hemostatic response. The function of VWF is strongly correlated to its structure; in order to fulfill its task in the vascular lumen, VWF has to undergo a complex packing/processing after translation into the ER.

View Article and Find Full Text PDF

Background: This study tested the hypothesis that extracorporeal shockwave therapy (ECSWT) effectively rescues critical limb ischemia (CLI) in mice through the upregulation of GPR120, which protects against inflammation and angiogenesis to restore blood flow in the ischemic area.

Methods And Results: Compared with the control, ECSWT-induced GPR120-mediated anti-inflammatory effects significantly suppressed the expression of inflammatory signaling biomarkers (TAK1/MAPK family/NF-κB/IL-1β/IL-6/TNF-α/MCP-1) in HUVECs, and these effects were abolished by silencing GPR120 or by the GPR120 antagonist AH7614 (all P < 0.001).

View Article and Find Full Text PDF

Angiotensin-Converting Enzyme 2 Enhances Autophagy via the Consumption of miR-326 in a Mouse Model of Acute Lung Injury.

Biochem Genet

January 2025

Department of Pulmonary Disease, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, China.

Angiotensin-converting enzyme 2 (ACE2) has been reported to exert a protective effect in acute lung injury (ALI), though its underlying mechanism remains incompletely understood. In this study, ACE2 expression was found to be upregulated in a mouse model of ALI induced by lipopolysaccharide (LPS) injection. ACE2 knockdown modulated the severity of ALI, the extent of autophagy, and the mTOR pathway in this model.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!