Optimisations and evolution of the mammalian respiratory system : A suggestion of possible gene sharing in evolution.

Eur Phys J E Soft Matter

Physique de la Matière Condensée, Ecole Polytechnique, CNRS, 91128, Palaiseau, France,

Published: September 2013

The respiratory system of mammalians is made of two successive branched structures with different physiological functions. The upper structure, or bronchial tree, is a fluid transportation system made of approximately 15 generations of bifurcations leading to the order of about 2(15) = 30, 000 terminal bronchioles with a diameter of approximately 0.5mm in the human lung. The branching pattern continues up to generation 23 but the structure and function of each of the subsequent structures, called acini, is different. Each acinus consists in a branched system of ducts surrounded by alveoli and plays the role of a diffusion cell where oxygen and carbon dioxide are exchanged with blood across the alveolar membrane. We show here that the bronchial tree simultaneously presents several different optimal properties. It is first energy efficient, second, it is space filling and third it is also "rapid". This physically based multi-optimality suggests that, in the course of evolution, an organ selected against one criterion could have been used later for a totally different purpose. For example, once selected for its energetic efficiency for the transport of a viscous fluid like blood, the same genetic material could have been used for its optimized rapidity. This would have allowed the emergence of atmospheric respiration made of inspiration-expiration cycles. For this phenomenon to exist, rapidity is essential as fresh air has to reach the gas exchange organs, the pulmonary acini, before the beginning of expiration. We finally show that the pulmonary acinus is optimized in the sense that the acinus morphology is directly related to the notion of a "best possible" extraction of entropic energy by a diffusion exchanger that has to feed oxygen efficiently from air to blood across a membrane of finite permeability.

Download full-text PDF

Source
http://dx.doi.org/10.1140/epje/i2013-13105-1DOI Listing

Publication Analysis

Top Keywords

respiratory system
8
bronchial tree
8
optimisations evolution
4
evolution mammalian
4
mammalian respiratory
4
system
4
system suggestion
4
suggestion gene
4
gene sharing
4
sharing evolution
4

Similar Publications

Mental disorders are complex illnesses with multifactorial etiologies involving genetic and environmental components. This review focuses on cellular models derived from the olfactory epithelium as a promising tool to study the molecular mechanisms of some neuropsychiatric diseases. The authors consider cell lines allowing the identification of potential biomarkers and pathogenetic mechanisms of schizophrenia, bipolar disorder, and Alzheimer's disease.

View Article and Find Full Text PDF

Children use nasogastric tubes (NGTs) to ensure optimum nutrition and medication delivery when oral feeding fails or when they experience faltering growth. Although this method is less invasive, children may experience complications associated with NGTs. There is a gap in the literature regarding the types and prevention of complications of NGTs in the pediatric population at home.

View Article and Find Full Text PDF

Progress of CCL20-CCR6 in the airways: a promising new therapeutic target.

J Inflamm (Lond)

December 2024

Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230022, China.

The chemokine CCL20, a small cytokine that belongs to the C-C chemokine family, interacts with its homologous receptor CCR6, which is expressed on wide range of cell types. According to current research, the CCL20-CCR6 has been established as acritical player in a diverse range of inflammatory, oncogenic, and autoimmune diseases. Within the respiratory system, CCL20-CCR6 demonstrates heightened expression in conditions such as allergic asthma, chronic airway inflammation, non-small cell lung cancer (NSCLC), chronic obstructive pulmonary disease (COPD), and other respiratory diseases, which is conducive to the inflammatory mediators recruitment and tumor microenvironment remodeling.

View Article and Find Full Text PDF

Delineation of intersegmental plane: application of blood flow blocking method in pulmonary segmentectomy.

J Cardiothorac Surg

December 2024

Department of Pulmonary Surgery, Hangzhou Institute of Medicine (HIM), Zhejiang Cancer Hospital, Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.

Background: The Modified Inflation-Deflation Method (MIDM) is widely used in China in pulmonary segmentectomies. We optimized the procedure, which was named as Blood Flow Blocking Method (BFBM), also known as "No-Waiting Segmentectomy". This method has produced commendable clinical outcomes in segmentectomies.

View Article and Find Full Text PDF

Early detection of bacterial pneumonia by characteristic induced odor signatures.

BMC Infect Dis

December 2024

Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, University of Zürich, Zurich, 8097, Switzerland.

Introduction: The ability to detect pathogenic bacteria before the onsets of severe respiratory symptoms and to differentiate bacterial infection allows to improve patient-tailored treatment leading to a significant reduction in illness severity, comorbidity as well as antibiotic resistance. As such, this study refines the application of the non-invasive Secondary Electrospray Ionization-High Resolution Mass Spectrometry (SESI-HRMS) methodology for real-time and early detection of human respiratory bacterial pathogens in the respiratory tract of a mouse infection model.

Methods: A real-time analysis of changes in volatile metabolites excreted by mice undergoing a lung infection by Staphylococcus aureus or Streptococcus pneumoniae were evaluated using a SESI-HRMS instrument.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!