Recently, the blood-brain barrier (BBB) has been pointed to as an active player in neurodegenerative disorders, albeit the actual succession of pathogenic events remains to be elucidated. Amyloid-β (Aβ) is an important pathogenic player in Alzheimer's disease, and it is cleared from the brain partly by transportation across the BBB. In this work we asked the question whether Aβ-induced alteration of tight junction (TJ) protein expression is a result of the complex in situ microenvironment of the BBB or if it can be replicated in an externalized environment, such as an in vitro epithelial barrier, where barrier property changes can be investigated without confounding factors. Therefore, we treated barrier forming MDCKI and II epithelial cells with Aβ42 and investigated TJ occludin and claudin-2 protein levels and cellular distribution through western blot and immunofluorescence. To assess barrier function, we measured transepithelial resistance (TEER) and studied cell polarity through atomic force microscopy (AFM). We found that Aβ42 cell treatment increased occludin expression and decreased claudin-2 expression. With TEER, an increase in paracellular resistance was noted, which started at 10 hours and peaked at 20 hours of Aβ42 treatment. AFM analysis demonstrated an associated morphological alteration of the cell monolayer. In conclusion, we demonstrated that Aβ42 is able to modify TJ protein expression and to functionally alter barrier properties in vitro and that this effect is not conditioned by other pathogenic Alzheimer's disease events taking place in the complex brain microenvironment.

Download full-text PDF

Source
http://dx.doi.org/10.3233/JAD-122374DOI Listing

Publication Analysis

Top Keywords

vitro epithelial
8
epithelial barrier
8
alzheimer's disease
8
protein expression
8
barrier
7
functional molecular
4
molecular characterization
4
characterization amyloid-β42
4
amyloid-β42 vitro
4
barrier model
4

Similar Publications

Clear cell renal cell carcinoma is a prevalent urological malignancy, imposing substantial burdens on both patients and society. In our study, we used bioinformatics methods to select four putative target genes associated with EMT and prognosis and developed a nomogram model which could accurately predicting 5-year patient survival rates. We further analyzed proteome and single-cell data and selected PLCG2 and TMEM38A for the following experiments.

View Article and Find Full Text PDF

Manzamine A, a natural compound derived from various sponge genera, features a β-carboline structure and exhibits a range of biological activities, including anti-inflammatory and antimalarial effects. Its potential as an anticancer agent has been explored in several tumor models, both in vitro and in vivo, showing effects through mechanisms such as cytotoxicity, regulation of the cell cycle, inhibition of cell migration, epithelial-to-mesenchymal transition (EMT), autophagy, and apoptosis through multi-target interactions of E2F transcriptional factors, ribosomal S6 kinases, androgen receptor (AR), SIX1, GSK-3β, V-ATPase, and p53/p21/p27 cascades. This systematic review evaluates existing literature on the potential application of this marine alkaloid as a novel cancer therapy, highlighting its promising ability to inhibit cancer cell growth while causing minimal side effects.

View Article and Find Full Text PDF

Allergen-induced activation of epithelial P2Y receptors promotes ATP exocytosis and type 2 immunity in airways.

J Allergy Clin Immunol

January 2025

Departments of Animal Science, Integrative Biology and Physiology, University of Minnesota,St. Paul, MN, 55108. Electronic address:

Background: Environmental allergens induce the release of danger signals from the airway epithelium that trigger type 2 immune responses and promote airway inflammation.

Objective: To investigate the role of allergen-stimulated P2Y receptor activation in regulating ATP, IL-33 and DNA release by human bronchial epithelial (hBE) cells and mouse airways.

Methods: hBE cells were exposed to Alternaria alternata extract and secretion of ATP, IL-33 and DNA were studied in vitro.

View Article and Find Full Text PDF

A promising future for breast cancer therapy with hydroxamic acid-based histone deacetylase inhibitors.

Bioorg Chem

January 2025

Department of In Vitro Carcinogenesis and Cellular Chemotherapy, Chittaranjan National Cancer Institute, 37, S. P. Mukherjee Road, Kolkata 700026, India. Electronic address:

Histone deacetylases (HDACs) play a critical role in chromatin remodelling and modulating the activity of various histone proteins. Aberrant HDAC functions has been related to the progression of breast cancer (BC), making HDAC inhibitors (HDACi) promising small-molecule therapeutics for its treatment. Hydroxamic acid (HA) is a significant pharmacophore due to its strong metal-chelating ability, HDAC inhibition properties, MMP inhibition abilities, and more.

View Article and Find Full Text PDF

Incidental nanoparticle characterisation in industrial settings to support risk assessment modelling.

Int J Hyg Environ Health

January 2025

Institute of Environmental Assessment and Water Research - Spanish Research council (IDAEA-CSIC), Barcelona, 08034, Spain; Spanish Ministry of Ecological Transition, Pollution Prevention Unit, Pza. San Juan de la Cruz 10, 28071, Madrid, Spain.

Research on nanoparticle (NP) release and potential exposure can be assessed through experimental field campaigns, laboratory simulations, and prediction models. However, risk assessment models are typically designed for manufactured NP (MNP) and have not been adapted for incidental NP (INP) properties. A notable research gap is identifying NP sources and their chemical, physical, and toxicological properties, especially in real-world settings.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!