Evidence-based treatment of guanidinoacetate methyltransferase (GAMT) deficiency.

Mol Genet Metab

Department of Pediatrics, Division of Medical Genetics, University of Utah, 50 North Mario Capecchi Drive, 2C412 SOM, Salt Lake City, UT 84132, USA. Electronic address:

Published: November 2013

Background: Guanidinoacetate methyltransferase (GAMT) deficiency causes cerebral creatine deficiency. Patients can have autistic behavior, seizures, intellectual disability, and severe speech delay. The goal of therapy is to increase creatine while reducing potentially neurotoxic guanidinoacetate concentrations. Here we evaluate how different therapies affect plasma guanidinoacetate levels in patients with GAMT deficiency.

Methods: Retrospective analysis of data from five new patients with GAMT deficiency (four with delays and seizures, one diagnosed at birth).

Results: The four symptomatic patients had decreased brain creatine by magnetic resonance spectroscopy and three also had abnormal globi pallidi by MRI. GAMT sequencing identified four previously reported mutations and one novel missense mutation (c.233T>A/p.V78E). Treatment with creatine (250-1000 mg/kg/day), ornithine (100-800 mg/kg/day), and sodium benzoate (50-135 mg/kg/day) supplements along with dietary protein restriction (0.8-1.5 g/kg/day) improved seizures and development with all patients becoming verbal. The patient treated at birth remains developmentally normal. Reduction in glycine and increase in ornithine levels significantly decreased plasma guanidinoacetate, with glycine levels being the best predictor of guanidinoacetate levels. In contrast, arginine levels were not significantly correlated with plasma guanidinoacetate.

Conclusions: Our results show that supplements of creatine, sodium benzoate (to reduce glycine) and ornithine reduce guanidinoacetate levels in patients with GAMT deficiency (dietary therapy was not evaluated in our study). Normal development with early therapy renders GAMT deficiency an ideal candidate for inclusion in newborn screening panels.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymgme.2013.08.020DOI Listing

Publication Analysis

Top Keywords

gamt deficiency
20
guanidinoacetate levels
12
patients gamt
12
guanidinoacetate methyltransferase
8
methyltransferase gamt
8
plasma guanidinoacetate
8
levels patients
8
sodium benzoate
8
guanidinoacetate
7
gamt
7

Similar Publications

L-arginine: glycine amidinotransferase (AGAT) gained academic interest as the rate-limiting enzyme in creatine biosynthesis and its role in the regulation of creatine homeostasis. Of clinical relevance is the diagnosis of patients with AGAT deficiency but also the potential role of AGAT as therapeutic target for the treatment of another creatine deficiency syndrome, guanidinoacetate N-methyltransferase (GAMT) deficiency. Applying a stable isotope-labeled substrate method, we utilized ARG 15N (ARG-δ2) and GLY 13C15N (GLY-δ3) to determine the rate of 1,2-13C,15N guanidinoacetate (GAA-δ5) formation to assess AGAT activity in various mouse tissue samples and human-derived cells.

View Article and Find Full Text PDF

Background: Targeting the enzyme L-Arginine:glycine amidinotransferase (AGAT) to reduce the formation of guanidinoacetate (GAA) in patients with guanidinoacetate methyltransferase (GAMT) deficiency, we attempted to identify drugs for repurposing that reduce the expression of AGAT via transcriptional inhibition.

Research Design And Methods: The authors applied a HeLa cell line stably expressing AGAT promoter and firefly luciferase reporter for high-content screening and secondary screening. For further assessment, the authors integrated Nanoluc luciferase as a reporter into the endogenous AGAT gene in HAP1 cell lines and used the human immortalized cell line RH30 as model of GAMT deficiency.

View Article and Find Full Text PDF
Article Synopsis
  • Creatine transporter (CTD) and guanidinoacetate methyltransferase (GAMT) deficiencies cause serious brain issues like intellectual disabilities and seizures, with no effective treatment for CTD and a strict diet plus supplements needed for GAMT.
  • A core outcome set (COS) has been developed in collaboration with caregivers and health professionals to determine key outcomes for assessing CTD and GAMT in clinical trials, including factors like cognitive functioning and emotional regulation.
  • This COS aims to prioritize patient and caregiver perspectives to improve the drug development process, enhance trial comparability, reduce bias, and optimize resource use in research for these conditions.
View Article and Find Full Text PDF

GAMT deficiency is a rare autosomal recessive disease within the group of cerebral creatine deficiency syndromes. Cerebral creatine depletion and accumulation of guanidinoacetate (GAA) lead to clinical presentation with intellectual disability, seizures, speech disturbances and movement disorders. Treatment consists of daily creatine supplementation to increase cerebral creatine, reduction of arginine intake and supplementation of ornithine for reduction of toxic GAA levels.

View Article and Find Full Text PDF

Cerebral creatine deficiency syndromes (CCDS) are inherited metabolic phenotypes of creatine synthesis and transport. There are two enzyme deficiencies, guanidinoacetate methyltransferase (GAMT), encoded by GAMT and arginine-glycine amidinotransferase (AGAT), encoded by GATM, which are involved in the synthesis of creatine. After synthesis, creatine is taken up by a sodium-dependent membrane bound creatine transporter (CRTR), encoded by SLC6A8, into all organs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!