Objectives: Impaired response inhibition underlies symptoms and altered functioning in patients with bipolar disorders (BD). The interpretation of fMRI studies requires an accurate estimation of neurocognitive performance, for which individual studies are typically underpowered. Thus, we performed the first combined meta-analysis of fMRI activations and neurocognitive performance in studies investigating response inhibition in BD.
Methods: We used signed differential mapping to combine anatomical coordinates of activation and standardized differences between means to evaluate neurocognitive performance in 30 fMRI studies of response inhibition comparing controls (n = 667) and patients with BD (n = 635).
Results: Relative to controls, BD patients underactivated the right inferior frontal gyrus (rIFG) regardless of current mood state and behavioral performance. Unique to euthymia were cortical hyperactivations (left superior temporal, right middle frontal gyri) combined with subcortical hypoactivations (basal ganglia), whereas unique to mania were subcortical hyperactivations (bilateral basal ganglia), combined with cortical hypoactivations (right inferior and medial frontal gyri). The fMRI changes in euthymia were associated with normal cognitive performance, whereas manic patients committed more errors during response inhibition.
Conclusions: The rIFG hypoactivations were congruent with a BD trait, which may underlie the impaired response inhibition in mania. Euthymic BD subjects may compensate for the rIFG hypoactivations by hyperactivations of adjacent cortical areas, yielding comparable performance in inhibitory functions and suggesting possibilities for neuromodulation treatment of these cognitive impairments. The reversal of the activation pattern between mania and euthymia has implications for monitoring of treatment response and identification of imminent relapse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jpsychires.2013.08.015 | DOI Listing |
J Am Chem Soc
January 2025
Key Laboratory of Bioorganic Phosphorus Chemistry and Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University, Beijing 100084, P. R. China.
Effective delivery and controlled release of metallo-prodrugs with sustained activation and rapid response feed the needs of precise medicine in metal chemotherapeutics. However, gold-based anticancer drugs often suffer from detoxification binding and extracellular transfer by sulfur-containing peptides. To address this challenge, we integrate a thiol-activated prodrug strategy of newly prepared hypercoordinated carbon-centered gold(I) clusters (HCGCs) with their photosensitization character to augment the mitochondrial release of Au(I) in tumors.
View Article and Find Full Text PDFFront Immunol
January 2025
Department of Bioengineering, College of Engineering, University of Toledo, Toledo, OH, United States.
Resolution of inflammation is essential for normal tissue healing and regeneration, with macrophages playing a key role in regulating this process through phenotypic changes from a pro-inflammatory to an anti-inflammatory state. Pharmacological and mechanical (mechanotherapy) techniques can be employed to polarize macrophages toward an anti-inflammatory phenotype, thereby diminishing inflammation. One clinically relevant pharmacological approach is the inhibition of Transient Receptor Potential Vanilloid 4 (TRPV4).
View Article and Find Full Text PDFJ Bisex
July 2024
Department of Psychology, Rosalind Franklin University of Medicine and Science.
Bi+ men are more likely to use alcohol and drugs than heterosexual and often gay men. The minority stress model is the predominant framework for understanding these disparities, but it is unknown whether this framework is consistent with bi+ men's perspectives. As part of an online survey, 69 bi+ young men (ages 18-29; 29% transgender) were asked why they think bisexual men are more likely to use alcohol and drugs than other men (including gay men).
View Article and Find Full Text PDFRegen Biomater
December 2024
Guangxi Engineering Center in Biomedical Material for Tissue and Organ Regeneration, Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed By the Province and Ministry, Guangxi Key Laboratory of Regenerative Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, China.
Injury caused by excess reactive oxygen species (ROS) may lead to susceptibility to bacterial infection and sustained inflammatory response, which are the major factors impeding diabetic wound healing. By utilizing optimal anti-inflammatory, antioxidant and antibacterial biomaterials for multifunctional wound dressings is critical in clinical applications. In this study, a novel electrospun PLGA/MoS@Pd nanofiber membrane was synthesized by encapsulating antioxidant and near-infrared (NIR) responsive MOS@Pd nanozymes in PLGA nanofibers to form a multifunctional dressing for diabetic wound repair.
View Article and Find Full Text PDFFront Vet Sci
January 2025
Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China.
(Pm) is a widespread zoonotic pathogen with the ability to infect wild animals, livestock, and humans. Pm infection can cause haemorrhagic pneumonia, indicating that the pathogenesis involves serious vascular injury and inflammation. 18β-Glycyrrhetinic acid (GA) has cardiovascular protective and anti-inflammatory effects, but its effect on vascular injury caused by Pm infection is not clear.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!