The substantial transformation of the angiotensin II receptor antagonist valsartan to the transformation product 2'-(2H-tetrazol-5-yl)-[1,1'-biphenyl]-4-carboxylic acid (referred to as valsartan acid) during the activated sludge process was demonstrated in the literature and confirmed in the here presented study. However, there was a severe lack of knowledge regarding the occurrence and fate of this compound in surface water and its behavior during drinking water treatment. In this work a comparative study on the occurrence and persistency of valsartan acid, three frequently used β-blockers (metoprolol, atenolol, and sotalol), atenolol acid (one significant transformation product of atenolol and metoprolol), and the two widely distributed persistent anthropogenic wastewater indicators carbamazepine and acesulfame in raw sewage, treated wastewater, surface water, groundwater, and tap water is presented. Median concentrations of valsartan acid in the analyzed matrices were 101, 1,310, 69, <1.0, and 65 ng L(-1), respectively. Treated effluents from wastewater treatment plants were confirmed as significant source. Regarding concentration levels of pharmaceutical residues in surface waters valsartan acid was found just as relevant as the analyzed β-blockers and the anticonvulsant carbamazepine. Regarding its persistency in surface waters it was comparable to carbamazepine and acesulfame. Furthermore, removal of valsartan acid during bank filtration was poor, which demonstrated the relevance of this compound for drinking water suppliers. Regarding drinking water treatment (Muelheim Process) the compound was resistant to ozonation but effectively eliminated (≥90%) by subsequent activated carbon filtration. However, without applying activated carbon filtration the compound may enter the drinking water distribution system as it was demonstrated for Berlin tap water.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.watres.2013.08.034 | DOI Listing |
BMC Cardiovasc Disord
December 2024
Jiangxi University of Chinese Medicine, Jiangxi, China.
Chem Asian J
December 2024
Organic Chemistry Division, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411008, India.
We present a comprehensive account of our efforts directed towards the synthesis of sacubitril, a neprilysin inhibitor used in combination with valsartan and marketed as Entresto™. Our initial approach to the formal synthesis of sacubitril employed a chiral pool strategy, utilizing (S)-pyroglutamic acid as a key building block and Cu(I)-mediated Csp-Csp cross-coupling as a key transformation. Further investigations led to the development of chiral amine transfer (CAT) reagents-based stereoselective synthesis.
View Article and Find Full Text PDFMikrochim Acta
November 2024
Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara, Turkey.
N-nitrosodimethylamine (NDMA) was determined using a molecularly imprinted polymer (MIP)-based electrochemical sensor. Green-synthesized silver nanoparticles were functionalized with cysteamine to enhance their integration into the electrode surface, which was used to modify a glassy carbon electrode (GCE). Furthermore, a MIP-based electrochemical sensor was constructed via electropolymerization of 3-aminophenyl boronic acid (3-APBA) as a conjugated functional monomer in the presence of lithium perchlorate (LiClO) solution as a dopant, chitosan as a carrier natural polymer, and NDMA as a template/target molecule.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!